| sparseSIR {SISIR} | R Documentation |
sparse SIR
Description
sparseSIR performs the second step of the method (shrinkage of ridge
SIR results
Usage
sparseSIR(
object,
inter_len,
adaptive = FALSE,
sel_prop = 0.05,
parallel = FALSE,
ncores = NULL
)
Arguments
object |
an object of class |
inter_len |
(numeric) vector with interval lengths |
adaptive |
should the function returns the list of strong zeros and non strong zeros (logical). Default to FALSE |
sel_prop |
used only when |
parallel |
whether the computation should be performed in parallel or not. Logical. Default is FALSE |
ncores |
number of cores to use if |
Value
S3 object of class sparseRes: a list consisting of
sEDRthe estimated EDR space (a p x d matrix)alphathe estimated shrinkage coefficients (a vector having a length similar tointer_len)qualitya vector with various qualities for the model (see Details)adapt_resifadaptive = TRUE, a list of two vectors:nonzerosindexes of variables that are strong non zeroszerosindexes of variables that are strong zeros
parametersa list of hyper-parameters for the method:inter_lenlengths of intervalssel_propifadaptive = TRUE, fraction of the coefficients which are considered as strong zeros or strong non zeros
rSIRsame as the inputobjectfita list for LASSO fit with:glmnetresult of theglmnetfunctionlambdavalue of the best Lasso parameter by CVxexploratory variable values as passed to fit the model
@details Different quality criteria used to select the best models among a
list of models with different interval definitions. Quality criteria are:
log-likelihood (loglik), cross-validation error as provided by the
function glmnet, two versions of the AIC (AIC
and AIC2) and of the BIC (BIC and BIC2) in which the
number of parameters is either the number of non null intervals or the
number of non null parameters with respect to the original variables.
Author(s)
Victor Picheny, victor.picheny@inrae.fr
Remi Servien, remi.servien@inrae.fr
Nathalie Vialaneix, nathalie.vialaneix@inrae.fr
References
Picheny, V., Servien, R., and Villa-Vialaneix, N. (2019) Interpretable sparse SIR for digitized functional data. Statistics and Computing, 29(2), 255–267.
See Also
ridgeSIR, project.sparseRes,
SISIR
Examples
set.seed(1140)
tsteps <- seq(0, 1, length = 200)
nsim <- 100
simulate_bm <- function() return(c(0, cumsum(rnorm(length(tsteps)-1, sd=1))))
x <- t(replicate(nsim, simulate_bm()))
beta <- cbind(sin(tsteps*3*pi/2), sin(tsteps*5*pi/2))
beta[((tsteps < 0.2) | (tsteps > 0.5)), 1] <- 0
beta[((tsteps < 0.6) | (tsteps > 0.75)), 2] <- 0
y <- log(abs(x %*% beta[ ,1]) + 1) + sqrt(abs(x %*% beta[ ,2]))
y <- y + rnorm(nsim, sd = 0.1)
res_ridge <- ridgeSIR(x, y, H = 10, d = 2, mu2 = 10^8)
res_sparse <- sparseSIR(res_ridge, rep(10, 20))