| ridgeSIR {SISIR} | R Documentation |
ridge SIR
Description
ridgeSIR performs the first step of the method (ridge regularization
of SIR)
Usage
ridgeSIR(x, y, H, d, mu2 = NULL)
Arguments
x |
explanatory variables (numeric matrix or data frame) |
y |
target variable (numeric vector) |
H |
number of slices (integer) |
d |
number of dimensions to be kept |
mu2 |
ridge regularization parameter (numeric, positive) |
Details
SI-SIR
Value
S3 object of class ridgeRes: a list consisting of
EDRthe estimated EDR space (a p x d matrix)condCthe estimated slice projection on EDR (a d x H matrix)eigenvaluesthe eigenvalues obtained during the generalized eigendecomposition performed by SIRparametersa list of hyper-parameters for the method:Hnumber of slicesddimension of the EDR spacemu2regularization parameter for the ridge penalty
utilsuseful outputs for further computations:Sigmacovariance matrix for xslicesslice number for all observationsinvsqrtSvalue of the inverse square root of the regularized covariance matrix for x
Author(s)
Victor Picheny, victor.picheny@inrae.fr
Remi Servien, remi.servien@inrae.fr
Nathalie Vialaneix, nathalie.vialaneix@inrae.fr
References
Picheny, V., Servien, R. and Villa-Vialaneix, N. (2019) Interpretable sparse SIR for digitized functional data. Statistics and Computing, 29(2), 255–267.
See Also
sparseSIR, SISIR,
tune.ridgeSIR
Examples
set.seed(1140)
tsteps <- seq(0, 1, length = 50)
simulate_bm <- function() return(c(0, cumsum(rnorm(length(tsteps)-1, sd=1))))
x <- t(replicate(50, simulate_bm()))
beta <- cbind(sin(tsteps*3*pi/2), sin(tsteps*5*pi/2))
y <- log(abs(x %*% beta[ ,1])) + sqrt(abs(x %*% beta[ ,2]))
y <- y + rnorm(50, sd = 0.1)
res_ridge <- ridgeSIR(x, y, H = 10, d = 2, mu2 = 10^8)
## Not run: print(res_ridge)