| SISIR {SISIR} | R Documentation | 
Interval Sparse SIR
Description
SISIR performs an automatic search of relevant intervals
Usage
SISIR(
  object,
  inter_len = rep(1, nrow(object$EDR)),
  sel_prop = 0.05,
  itermax = Inf,
  minint = 2,
  parallel = TRUE,
  ncores = NULL
)
Arguments
| object | an object of class  | 
| inter_len | (numeric) vector with interval lengths for the initial state. Default is to set one interval for each variable (all intervals have length 1) | 
| sel_prop | fraction of the coefficients that will be considered as strong zeros and strong non zeros. Default to 0.05 | 
| itermax | maximum number of iterations. Default to Inf | 
| minint | minimum number of intervals. Default to 2 | 
| parallel | whether the computation should be performed in parallel or not. Logical. Default is FALSE | 
| ncores | number of cores to use if  | 
Details
Different quality criteria used to select the best models among a list of 
models with different interval definitions. Quality criteria are: 
log-likelihood (loglik), cross-validation error as provided by the
function glmnet, two versions of the AIC (AIC 
and AIC2) and of the BIC (BIC and BIC2) in which the 
number of parameters is either the number of non null intervals or the 
number of non null parameters with respect to the original variables
Value
S3 object of class SISIR: a list consisting of
- sEDRthe estimated EDR spaces (a list of p x d matrices)
- alphathe estimated shrinkage coefficients (a list of vectors)
- intervalsthe interval lengths (a list of vectors)
- qualitya data frame with various qualities for the model. The chosen quality measures are the same than for the function- sparseSIRplus the number of intervals- nbint
- init_sel_propinitial fraction of the coefficients which are considered as strong zeros or strong non zeros
- rSIRsame as the input- object
Author(s)
Victor Picheny, victor.picheny@inrae.fr
Remi Servien, remi.servien@inrae.fr
Nathalie Vialaneix, nathalie.vialaneix@inrae.fr
References
Picheny, V., Servien, R. and Villa-Vialaneix, N. (2016) Interpretable sparse SIR for digitized functional data. Statistics and Computing, 29(2), 255–267.
See Also
Examples
set.seed(1140)
tsteps <- seq(0, 1, length = 200)
nsim <- 100
simulate_bm <- function() return(c(0, cumsum(rnorm(length(tsteps)-1, sd=1))))
x <- t(replicate(nsim, simulate_bm()))
beta <- cbind(sin(tsteps*3*pi/2), sin(tsteps*5*pi/2))
beta[((tsteps < 0.2) | (tsteps > 0.5)), 1] <- 0
beta[((tsteps < 0.6) | (tsteps > 0.75)), 2] <- 0
y <- log(abs(x %*% beta[ ,1]) + 1) + sqrt(abs(x %*% beta[ ,2]))
y <- y + rnorm(nsim, sd = 0.1)
res_ridge <- ridgeSIR(x, y, H = 10, d = 2, mu2 = 10^8)
## Not run: res_fused <- SISIR(res_ridge, rep(1, ncol(x)))