predict.SIS {SIS} | R Documentation |
Model prediction based on a fitted SIS object.
Description
Similar to the usual predict methods, this function returns predictions from
a fitted 'SIS'
object.
Usage
## S3 method for class 'SIS'
predict(
object,
newx,
lambda = object$lambda,
which = NULL,
type = c("response", "link", "class"),
...
)
Arguments
object |
Fitted |
newx |
Matrix of new values for |
lambda |
Penalty parameter |
which |
Indices of the penalty parameter |
type |
Type of prediction required. Type |
... |
Not used. Other arguments to predict. |
Value
The object returned depends on type.
Author(s)
Jianqing Fan, Yang Feng, Diego Franco Saldana, Richard Samworth, and Yichao Wu
References
Diego Franco Saldana and Yang Feng (2018) SIS: An R package for Sure Independence Screening in Ultrahigh Dimensional Statistical Models, Journal of Statistical Software, 83, 2, 1-25.
Jianqing Fan and Jinchi Lv (2008) Sure Independence Screening for Ultrahigh Dimensional Feature Space (with discussion). Journal of Royal Statistical Society B, 70, 849-911.
Jianqing Fan and Rui Song (2010) Sure Independence Screening in Generalized Linear Models with NP-Dimensionality. The Annals of Statistics, 38, 3567-3604.
Jianqing Fan, Richard Samworth, and Yichao Wu (2009) Ultrahigh Dimensional Feature Selection: Beyond the Linear Model. Journal of Machine Learning Research, 10, 2013-2038.
Jianqing Fan, Yang Feng, and Yichao Wu (2010) High-dimensional Variable Selection for Cox Proportional Hazards Model. IMS Collections, 6, 70-86.
Jianqing Fan, Yang Feng, and Rui Song (2011) Nonparametric Independence Screening in Sparse Ultrahigh Dimensional Additive Models. Journal of the American Statistical Association, 106, 544-557.
Diego Franco Saldana and Yang Feng (2014) SIS: An R package for Sure Independence Screening in Ultrahigh Dimensional Statistical Models, Journal of Statistical Software.
See Also
Examples
set.seed(0)
n = 400; p = 50; rho = 0.5
corrmat = diag(rep(1-rho, p)) + matrix(rho, p, p)
corrmat[,4] = sqrt(rho)
corrmat[4, ] = sqrt(rho)
corrmat[4,4] = 1
corrmat[,5] = 0
corrmat[5, ] = 0
corrmat[5,5] = 1
cholmat = chol(corrmat)
x = matrix(rnorm(n*p, mean=0, sd=1), n, p)
x = x%*%cholmat
testX = matrix(rnorm(10*p, mean=0, sd=1), nrow=10, ncol=p)
# gaussian response
set.seed(1)
b = c(4,4,4,-6*sqrt(2),4/3)
y=x[, 1:5]%*%b + rnorm(n)
model1=SIS(x, y, family='gaussian', tune='bic', varISIS='aggr', seed=11)
predict(model1, testX, type='response')
predict(model1, testX, which=1:10, type='response')
## Not run:
# binary response
set.seed(2)
feta = x[, 1:5]%*%b; fprob = exp(feta)/(1+exp(feta))
y = rbinom(n, 1, fprob)
model2=SIS(x, y, family='binomial', tune='bic', varISIS='aggr', seed=21)
predict(model2, testX, type='response')
predict(model2, testX, type='link')
predict(model2, testX, type='class')
predict(model2, testX, which=1:10, type='response')
predict(model2, testX, which=1:10, type='link')
predict(model2, testX, which=1:10, type='class')
# poisson response
set.seed(3)
b = c(0.6,0.6,0.6,-0.9*sqrt(2))
myrates = exp(x[, 1:4]%*%b)
y = rpois(n, myrates)
model3=SIS(x, y, family='poisson', penalty = 'lasso',tune='bic', varISIS='aggr', seed=31)
predict(model3, testX, type='response')
predict(model3, testX, type='link')
## End(Not run)