| nDronesPoisson {SIMplyBee} | R Documentation |
Sample a number of drones
Description
Sample a number of drones - used when nDrones = NULL
(see SimParamBee$nDrones).
This is just an example. You can provide your own functions that satisfy your needs!
Usage
nDronesPoisson(x, n = 1, average = 100)
nDronesTruncPoisson(x, n = 1, average = 100, lowerLimit = 0)
nDronesColonyPhenotype(
x,
queenTrait = 1,
workersTrait = NULL,
checkProduction = FALSE,
lowerLimit = 0,
...
)
Arguments
x |
|
n |
integer, number of samples |
average |
numeric, average number of drones |
lowerLimit |
numeric, returned numbers will be above this value |
queenTrait |
numeric (column position) or character (column name), trait
that represents queen's effect on the colony phenotype (defined in
|
workersTrait |
numeric (column position) or character (column name), trait
that represents workers's effect on the colony phenotype (defined in
|
checkProduction |
logical, does the phenotype depend on the production
status of colony; if yes and production is not |
... |
other arguments of |
Details
nDronesPoisson samples from a Poisson distribution with a
given average, which can return a value 0.
nDronesTruncPoisson samples from a zero truncated Poisson
distribution.
nDronesColonyPhenotype returns a number (above lowerLimit) as
a function of colony phenotype, say queen's fecundity. Colony phenotype is
provided by mapCasteToColonyPheno. You need to set up
traits influencing the colony phenotype and their parameters (mean and
variances) via SimParamBee (see examples).
When x is Pop-class, only workersTrait is not
used, that is, only queenTrait is used.
Value
numeric, number of drones
Functions
-
nDronesTruncPoisson(): Sample a non-zero number of drones -
nDronesColonyPhenotype(): Sample a non-zero number of drones based on colony phenotype, say queen's fecundity
See Also
SimParamBee field nDrones and
vignette(topic = "QuantitativeGenetics", package = "SIMplyBee")
Examples
nDronesPoisson()
nDronesPoisson()
n <- nDronesPoisson(n = 1000)
hist(n, breaks = seq(from = min(n), to = max(n)), xlim = c(0, 200))
table(n)
nDronesTruncPoisson()
nDronesTruncPoisson()
n <- nDronesTruncPoisson(n = 1000)
hist(n, breaks = seq(from = min(n), to = max(n)), xlim = c(0, 200))
table(n)
# Example for nDronesColonyPhenotype()
founderGenomes <- quickHaplo(nInd = 3, nChr = 1, segSites = 100)
SP <- SimParamBee$new(founderGenomes)
average <- 100
h2 <- 0.1
SP$addTraitA(nQtlPerChr = 100, mean = average, var = average * h2)
SP$setVarE(varE = average * (1 - h2))
basePop <- createVirginQueens(founderGenomes)
drones <- createDrones(x = basePop[1], nInd = 50)
droneGroups <- pullDroneGroupsFromDCA(drones, n = 2, nDrones = 15)
colony1 <- createColony(x = basePop[2])
colony2 <- createColony(x = basePop[3])
colony1 <- cross(colony1, drones = droneGroups[[1]])
colony2 <- cross(colony2, drones = droneGroups[[2]])
colony1@queen@pheno
colony2@queen@pheno
createDrones(colony1, nInd = nDronesColonyPhenotype)
createDrones(colony2, nInd = nDronesColonyPhenotype)