PARTIAL_COEFS {SIMPLE.REGRESSION}R Documentation

Standardized coefficients and partial correlations for multiple regression

Description

Produces standardized regression coefficients, partial correlations, and semi-partial correlations for a correlation matrix in which one variable is a dependent or outcome variable and the other variables are independent or predictor variables.

Usage

PARTIAL_COEFS(cormat, modelRsq=NULL, verbose=TRUE)

Arguments

cormat

A correlation matrix. The DV (the dependent or outcome variable) must be in the first row/column of cormat.
Example: cormat = correls

modelRsq

(optional) The model Rsquared, which makes the computations slightly faster when it is available.
Example: modelRsq = .22

verbose

Should detailed results be displayed in console?
The options are: TRUE (default) or FALSE.

Value

A data.frame containing the standardized regression coefficients (betas), the Pearson correlations, the partial correlations, and the semi-partial correlations for each variable with the DV.

Author(s)

Brian P. O'Connor

References

Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Lawrence Erlbaum Associates.

Examples

PARTIAL_COEFS(cormat = cor(data_Green_Salkind_2014))

[Package SIMPLE.REGRESSION version 0.1.9 Index]