SIMMS-package {SIMMS} | R Documentation |
SIMMS - Subnetwork Integration for Multi-Modal Signatures
Description
Algorithms to create prognostic biomarkers using biological networks
Details
Package: | SIMMS |
Type: | Package |
License: | GPL-2 |
LazyLoad: | yes |
Author(s)
Syed Haider, Michal Grzadkowski & Paul C. Boutros
Examples
options("warn" = -1);
# get data directory
data.directory <- get.program.defaults(networks.database = "test")[["test.data.dir"]];
# initialise params
output.directory <- tempdir();
data.types <- c("mRNA");
feature.selection.datasets <- c("Breastdata1");
training.datasets <- c("Breastdata1");
validation.datasets <- c("Breastdata2");
feature.selection.p.thresholds <- c(0.5);
feature.selection.p.threshold <- 0.5;
learning.algorithms <- c("backward", "forward", "glm");
top.n.features <- 5;
# compute network HRs for all the subnet features
derive.network.features(
data.directory = data.directory,
output.directory = output.directory,
data.types = data.types,
feature.selection.datasets = feature.selection.datasets,
feature.selection.p.thresholds = feature.selection.p.thresholds,
networks.database = "test"
);
# preparing training and validation datasets.
# Normalisation & patientwise subnet feature scores
prepare.training.validation.datasets(
data.directory = data.directory,
output.directory = output.directory,
data.types = data.types,
p.threshold = feature.selection.p.threshold,
feature.selection.datasets = feature.selection.datasets,
datasets = unique(c(training.datasets, validation.datasets)),
networks.database = "test"
);
# create classifier assessing univariate prognostic power of subnetwork modules (Train and Validate)
create.classifier.univariate(
data.directory = data.directory,
output.directory = output.directory,
feature.selection.datasets = feature.selection.datasets,
feature.selection.p.threshold = feature.selection.p.threshold,
training.datasets = training.datasets,
validation.datasets = validation.datasets,
top.n.features = top.n.features
);
# create a multivariate classifier (Train and Validate)
create.classifier.multivariate(
data.directory = data.directory,
output.directory = output.directory,
feature.selection.datasets = feature.selection.datasets,
feature.selection.p.threshold = feature.selection.p.threshold,
training.datasets = training.datasets,
validation.datasets = validation.datasets,
learning.algorithms = learning.algorithms,
top.n.features = top.n.features
);
# (optional) plot Kaplan-Meier survival curves and perform senstivity analysis
if (FALSE){
create.survivalplots(
data.directory = data.directory,
output.directory = output.directory,
training.datasets = training.datasets,
validation.datasets = validation.datasets,
top.n.features = top.n.features,
learning.algorithms = learning.algorithms,
survtime.cutoffs = c(5),
KM.plotting.fun = "create.KM.plot",
resolution = 100
);
}
[Package SIMMS version 1.3.2 Index]