| simico_out {SIMICO} | R Documentation | 
Get P-Values
Description
Calculate test statistic and p-values for multiple outcome test and multiple burden test.
Usage
simico_out(nullFit, xDats, lt_all, rt_all, Itt, a1, a2, G, k, d)
Arguments
nullFit | 
 Results of the Newton-Raphson: estimates of the beta coefficients.  | 
xDats | 
 List of design matrices.  | 
lt_all | 
 Matrix containing the generated left interval times.  | 
rt_all | 
 Matrix containing the generated right interval times.  | 
Itt | 
 I_theta theta - Information matrix of theta.  | 
G | 
 n x q matrix of genetic information.  | 
a1 | 
 First shape parameter of beta parameter.  | 
a2 | 
 Second shape parameter of beta parameter.  | 
k | 
 Total number of outcomes.  | 
d | 
 Number of quadrature nodes.  | 
Value
multQ | 
 Score statistic for multiple outcome test.  | 
multP | 
 P-value for multiple outcome test.  | 
burdQ | 
 Score statistic for multiple burden test.  | 
burdP | 
 P-value for multiple burden test.  | 
Examples
# Set number of outcomes
k = 2
# Set number of observations
n = 100
# Set number of covariates
p = 2
# Set number of SNPs
q = 50
# Set number of causal SNPs
num = 5
# Set number of quadrature nodes
d = 100
# Variance of subject-specific random effect
tauSq = 1
# Define the effect sizes
effectSizes <- c(.03, .15)
# Set MAF cutoff for causal SNPs
Causal.MAF.Cutoff = 0.1
# the baseline cumulative hazard function
bhFunInv <- function(x) {x}
set.seed(1)
# Generate covariate matrix
xMat <- cbind(rnorm(n), rbinom(n=n, size=1, prob=0.5))
# Generate genetic matrix
gMat <- matrix(data=rbinom(n=n*q, size=2, prob=0.1), nrow=n)
# Get indices to specific select causal variants
idx <- Get_CausalSNPs_bynum(gMat, num, Causal.MAF.Cutoff)
# Subset the gMat
gMatCausal <- gMat[,idx]
# Generate the multiple outcomes
exampleDat <- simico_gen_dat(bhFunInv = bhFunInv, obsTimes = 1:3,
                             windowHalf = 0.1, n, p, k, tauSq, gMatCausal,
                             xMat, effectSizes)
# Set the initial estimate values
init_beta <-c (rep(c(0, 0, 0, 1, 0), k), 1)
# Run the newton-raphson
nullFit <- simico_fit_null(init_beta = init_beta,
   epsilon = 10^-5, xDats = exampleDat$fullDat$xDats,
   lt_all = exampleDat$leftTimesMat,
   rt_all = exampleDat$rightTimesMat,
   k = k, d = d)
# Get the test statistics p-values
out <- simico_out(nullFit = nullFit$beta_fit,
   xDats = exampleDat$fullDat$xDats,
   lt_all = exampleDat$leftTimesMat,
   rt_all = exampleDat$rightTimesMat,
   Itt = nullFit$jmat, a1 = 1, a2 = 25,
   G = gMat, k  = k, d = d)
# Print results
# Score statistic
out$multQ
# P-values
out$multP
[Package SIMICO version 0.2.0 Index]