FA_PFP {SILFS} | R Documentation |
Factor Adjusted-Pairwise Fusion Penalty (FA-PFP) Method for Subgroup Identification and Variable Selection
Description
This function utilizes the FA-PFP method implemented via the Alternating Direction Method of Multipliers (ADMM) algorithm to identify subgroup structures and conduct variable selection.
Usage
FA_PFP(Y, Fhat, Uhat, vartheta, lam, gam, alpha_init, lam_lasso, epsilon)
Arguments
Y |
The response vector of length |
Fhat |
The estimated common factors matrix of size |
Uhat |
The estimated idiosyncratic factors matrix of size |
vartheta |
The Lagrangian augmentation parameter for intercepts. |
lam |
The tuning parameter for Pairwise Fusion Penalty. |
gam |
The user-supplied parameter for Alternating Direction Method of Multipliers (ADMM) algorithm. |
alpha_init |
The initialization of intercept parameter. |
lam_lasso |
The tuning parameter for LASSO. |
epsilon |
The user-supplied stopping tolerance. |
Value
A list with the following components:
alpha_m |
The estimated intercept parameter vector of length |
theta_m |
The estimated regression coefficient vector, matched with common factor terms, with a dimension of |
beta_m |
The estimated regression coefficients matched with idiosyncratic factors, with a dimension of |
eta_m |
A numeric matrix storing the pairwise differences of the estimated intercepts, with size of |
Author(s)
Yong He, Liu Dong, Fuxin Wang, Mingjuan Zhang, Wenxin Zhou.
References
Ma, S., Huang, J., 2017. A concave pairwise fusion approach to subgroup analysis.
Examples
n <- 50
p <- 50
r <- 3
alpha <- sample(c(-3,3),n,replace=TRUE,prob=c(1/2,1/2))
beta <- c(rep(1,2),rep(0,48))
B <- matrix((rnorm(p*r,1,1)),p,r)
F_1 <- matrix((rnorm(n*r,0,1)),n,r)
U <- matrix(rnorm(p*n,0,0.1),n,p)
X <- F_1%*%t(B)+U
Y <- alpha + X%*%beta + rnorm(n,0,0.5)
alpha_init <- INIT(Y,F_1,0.1)
FA_PFP(Y,F_1,U,1,0.67,3,alpha_init,0.05,0.3)