DCADMM_iter_l1 {SILFS} | R Documentation |
SILFS-Based Subgroup Identification and Variable Selection Optimized by DC-ADMM under the L1 Distance
Description
This function employs SILFS method and uses the corresponding Difference of Convex functions-Alternating Direction Method of Multipliers (DC-ADMM) algorithm for optimization to identify subgroup structures and conduct variable selection under the L1 Distance.
Usage
DCADMM_iter_l1(
Y,
F_hat,
U_hat,
r_1,
r_2,
r_3,
lambda_1,
lambda_2,
K,
alpha_init,
epsilon_1,
epsilon_2
)
Arguments
Y |
The response vector of length |
F_hat |
The estimated factor matrix of size |
U_hat |
The estimated idiosyncratic factors matrix of size |
r_1 |
The Lagrangian augmentation parameter for constraints of intercepts. |
r_2 |
The Lagrangian augmentation parameter for constraints of group centers. |
r_3 |
The Lagrangian augmentation parameter for constraints of coefficients. |
lambda_1 |
The tuning parameter for Center-Augmented Regularization. |
lambda_2 |
The tuning parameter for LASSO. |
K |
The estimated group number. |
alpha_init |
The initialization of intercept parameter. |
epsilon_1 |
The user-supplied stopping error for outer loop. |
epsilon_2 |
The user-supplied stopping error for inner loop. |
Value
A list with the following components:
alpha_curr |
The estimated intercept parameter vector of length |
gamma_curr |
The estimated vector of subgroup centers of length |
theta_curr |
The estimated regression coefficient vector, matched with common factor terms, with a dimension of |
beta_curr |
The estimated regression coefficients matched with idiosyncratic factors, with a dimension of |
Author(s)
Yong He, Liu Dong, Fuxin Wang, Mingjuan Zhang, Wenxin Zhou.
References
He, Y., Liu, D., Wang, F., Zhang, M., Zhou, W., 2024. High-Dimensional Subgroup Identification under Latent Factor Structures.
Examples
n <- 50
p <- 50
r <- 3
K <- 2
alpha <- sample(c(-3,3),n,replace=TRUE,prob=c(1/2,1/2))
beta <- c(rep(1,2),rep(0,48))
B <- matrix((rnorm(p*r,1,1)),p,r)
F_1 <- matrix((rnorm(n*r,0,1)),n,r)
U <- matrix(rnorm(p*n,0,0.1),n,p)
X <- F_1%*%t(B)+U
Y <- alpha + X%*%beta + rnorm(n,0,0.5)
alpha_init <- INIT(Y,F_1,0.1)
DCADMM_iter_l1(Y,F_1,U,0.5,0.5,0.5,0.01,0.05,K,alpha_init,1,0.3)