BIC_SILFS {SILFS} | R Documentation |
Selecting Tuning Parameter for SILFS Method via corresponding BIC
Description
This function is to select tuning parameters simultaneously for SILFS method via minimizing the BIC.
Usage
BIC_SILFS(
Y,
Fhat,
Uhat,
K,
alpha_init,
lasso_start,
lasso_stop,
CAR_start,
CAR_stop,
grid_1,
grid_2,
epsilon
)
Arguments
Y |
The response vector of length |
Fhat |
The estimated common factors matrix of size |
Uhat |
The estimated idiosyncratic factors matrix of size |
K |
The estimated subgroup number. |
alpha_init |
The initialization of intercept parameter. |
lasso_start |
The user-supplied start search value of the tuning parameters for LASSO. |
lasso_stop |
The user-supplied stop search value of the tuning parameters for LASSO. |
CAR_start |
The user-supplied start search value of the tuning parameters for Center-Augmented Regularization. |
CAR_stop |
The user-supplied stop search value of the tuning parameters for Center-Augmented Regularization. |
grid_1 |
The user-supplied number of search grid points corresponding to the LASSO tuning parameter. |
grid_2 |
The user-supplied number of search grid points corresponding to the tuning parameter for Center-Augmented Regularization. |
epsilon |
The user-supplied stopping tolerance. |
Value
A list with the following components:
lasso |
The tuning parameter of the LASSO penalty selected using BIC. |
CAR |
The tuning parameter of the Center Augmented Regularization selected using BIC. |
Examples
n <- 50
p <- 50
r <- 3
K <- 2
lasso_start <- sqrt(log(p)/n)*0.01
lasso_stop <- sqrt(log(p)/n)*10^(0.5)
CAR_start <- 0.001
CAR_stop <- 0.1
grid_1 <- 5
grid_2 <- 5
alpha <- sample(c(-3,3),n,replace=TRUE,prob=c(1/2,1/2))
beta <- c(rep(1,2),rep(0,48))
B <- matrix((rnorm(p*r,1,1)),p,r)
F_1 <- matrix((rnorm(n*r,0,1)),n,r)
U <- matrix(rnorm(p*n,0,0.1),n,p)
X <- F_1%*%t(B)+U
Y <- alpha + X%*%beta + rnorm(n,0,0.5)
alpha_init <- INIT(Y,F_1,0.1)
BIC_SILFS(Y,F_1,U,K,alpha_init,lasso_start,lasso_stop,CAR_start,CAR_stop,grid_1,grid_2,0.3)