QF {SIHR} | R Documentation |
Inference for quadratic forms of the regression vector in high dimensional generalized linear regressions
Description
Inference for quadratic forms of the regression vector in high dimensional generalized linear regressions
Usage
QF(
X,
y,
G,
A = NULL,
model = c("linear", "logistic", "logistic_alter"),
intercept = TRUE,
beta.init = NULL,
split = TRUE,
lambda = NULL,
mu = NULL,
prob.filter = 0.05,
rescale = 1.1,
tau = c(0.25, 0.5, 1),
verbose = FALSE
)
Arguments
X |
Design matrix, of dimension |
y |
Outcome vector, of length |
G |
The set of indices, |
A |
The matrix A in the quadratic form, of dimension
|
model |
The high dimensional regression model, either |
intercept |
Should intercept be fitted for the initial estimator
(default = |
beta.init |
The initial estimator of the regression vector (default =
|
split |
Sampling splitting or not for computing the initial estimator.
It take effects only when |
lambda |
The tuning parameter in fitting initial model. If |
mu |
The dual tuning parameter used in the construction of the
projection direction. If |
prob.filter |
The threshold of estimated probabilities for filtering observations in logistic regression. (default = 0.05) |
rescale |
The factor to enlarge the standard error to account for the finite sample bias. (default = 1.1) |
tau |
The enlargement factor for asymptotic variance of the
bias-corrected estimator to handle super-efficiency. It allows for a scalar
or vector. (default = |
verbose |
Should intermediate message(s) be printed. (default =
|
Value
est.plugin |
The plugin(biased) estimator for the quadratic form of the
regression vector restricted to |
est.debias |
The bias-corrected estimator of the quadratic form of the regression vector |
se |
Standard errors of the bias-corrected estimator,
length of |
Examples
X <- matrix(rnorm(100 * 5), nrow = 100, ncol = 5)
y <- X[, 1] * 0.5 + X[, 2] * 1 + rnorm(100)
G <- c(1, 2)
A <- matrix(c(1.5, 0.8, 0.8, 1.5), nrow = 2, ncol = 2)
Est <- QF(X, y, G, A, model = "linear")
## compute confidence intervals
ci(Est, alpha = 0.05, alternative = "two.sided")
## summary statistics
summary(Est)