LF {SIHR} | R Documentation |
Inference for linear combination of the regression vector in high dimensional generalized linear regression
Description
Inference for linear combination of the regression vector in high dimensional generalized linear regression
Usage
LF(
X,
y,
loading.mat,
model = c("linear", "logistic", "logistic_alter"),
intercept = TRUE,
intercept.loading = FALSE,
beta.init = NULL,
lambda = NULL,
mu = NULL,
prob.filter = 0.05,
rescale = 1.1,
verbose = FALSE
)
Arguments
X |
Design matrix, of dimension |
y |
Outcome vector, of length |
loading.mat |
Loading matrix, nrow= |
model |
The high dimensional regression model, either |
intercept |
Should intercept be fitted for the initial estimator
(default = |
intercept.loading |
Should intercept term be included for the loading
(default = |
beta.init |
The initial estimator of the regression vector (default =
|
lambda |
The tuning parameter in fitting initial model. If |
mu |
The dual tuning parameter used in the construction of the
projection direction. If |
prob.filter |
The threshold of estimated probabilities for filtering observations in logistic regression. (default = 0.05) |
rescale |
The factor to enlarge the standard error to account for the finite sample bias. (default = 1.1) |
verbose |
Should intermediate message(s) be printed. (default =
|
Value
est.plugin.vec |
The vector of plugin(biased) estimators for the
linear combination of regression coefficients, length of
|
est.debias.vec |
The vector of bias-corrected estimators for the linear
combination of regression coefficients, length of |
se.vec |
The vector of standard errors of the bias-corrected estimators,
length of |
proj.mat |
The matrix of projection directions; each column corresponding to a loading of interest. |
Examples
X <- matrix(rnorm(100 * 5), nrow = 100, ncol = 5)
y <- -0.5 + X[, 1] * 0.5 + X[, 2] * 1 + rnorm(100)
loading1 <- c(1, 1, rep(0, 3))
loading2 <- c(-0.5, -1, rep(0, 3))
loading.mat <- cbind(loading1, loading2)
Est <- LF(X, y, loading.mat, model = "linear")
## compute confidence intervals
ci(Est, alpha = 0.05, alternative = "two.sided")
## summary statistics
summary(Est)