sim1.2017Liu {SHT} | R Documentation |
One-sample Simultaneous Test of Mean and Covariance by Liu et al. (2017)
Description
Given a multivariate sample X
, hypothesized mean \mu_0
and covariance \Sigma_0
, it tests
H_0 : \mu_x = \mu_0 \textrm{ and } \Sigma_x = \Sigma_0 \quad vs\quad H_1 : \textrm{ not } H_0
using the procedure by Liu et al. (2017).
Usage
sim1.2017Liu(X, mu0 = rep(0, ncol(X)), Sigma0 = diag(ncol(X)))
Arguments
X |
an |
mu0 |
a length- |
Sigma0 |
a |
Value
a (list) object of S3
class htest
containing:
- statistic
a test statistic.
- p.value
p
-value underH_0
.- alternative
alternative hypothesis.
- method
name of the test.
- data.name
name(s) of provided sample data.
References
Liu Z, Liu B, Zheng S, Shi N (2017). “Simultaneous testing of mean vector and covariance matrix for high-dimensional data.” Journal of Statistical Planning and Inference, 188, 82–93. ISSN 03783758.
Examples
## CRAN-purpose small example
smallX = matrix(rnorm(10*3),ncol=3)
sim1.2017Liu(smallX) # run the test
## Not run:
## empirical Type 1 error
niter = 1000
counter = rep(0,niter) # record p-values
for (i in 1:niter){
X = matrix(rnorm(50*10), ncol=10)
counter[i] = ifelse(sim1.2017Liu(X)$p.value < 0.05, 1, 0)
}
## print the result
cat(paste("\n* Example for 'sim1.2017Liu'\n","*\n",
"* number of rejections : ", sum(counter),"\n",
"* total number of trials : ", niter,"\n",
"* empirical Type 1 error : ",round(sum(counter/niter),5),"\n",sep=""))
## End(Not run)
[Package SHT version 0.1.8 Index]