norm.1965SW {SHT} | R Documentation |
Univariate Test of Normality by Shapiro and Wilk (1965)
Description
Given an univariate sample x
, it tests
H_0 : x\textrm{ is from normal distribution} \quad vs\quad H_1 : \textrm{ not } H_0
using a test procedure by Shapiro and Wilk (1965). Actual computation of p
-value
is done via an approximation scheme by Royston (1992).
Usage
norm.1965SW(x)
Arguments
x |
a length- |
Value
a (list) object of S3
class htest
containing:
- statistic
a test statistic.
- p.value
p
-value underH_0
.- alternative
alternative hypothesis.
- method
name of the test.
- data.name
name(s) of provided sample data.
References
Shapiro SS, Wilk MB (1965). “An Analysis of Variance Test for Normality (Complete Samples).” Biometrika, 52(3/4), 591. ISSN 00063444.
Royston P (1992). “Approximating the Shapiro-Wilk W-test for non-normality.” Statistics and Computing, 2(3), 117–119. ISSN 0960-3174, 1573-1375.
Examples
## generate samples from several distributions
x = stats::runif(28) # uniform
y = stats::rgamma(28, shape=2) # gamma
z = stats::rlnorm(28) # log-normal
## test above samples
test.x = norm.1965SW(x) # uniform
test.y = norm.1965SW(y) # gamma
test.z = norm.1965SW(z) # log-normal
[Package SHT version 0.1.8 Index]