mvar1.1998AS {SHT} | R Documentation |
One-sample Simultaneous Test of Mean and Variance by Arnold and Shavelle (1998)
Description
Given two univariate samples x
and y
, it tests
H_0 : \mu_x = \mu_0, \sigma_x^2 = \sigma_0^2 \quad vs \quad H_1 : \textrm{ not } H_0
using asymptotic likelihood ratio test.
Usage
mvar1.1998AS(x, mu0 = 0, var0 = 1)
Arguments
x |
a length- |
mu0 |
hypothesized mean |
var0 |
hypothesized variance |
Value
a (list) object of S3
class htest
containing:
- statistic
a test statistic.
- p.value
p
-value underH_0
.- alternative
alternative hypothesis.
- method
name of the test.
- data.name
name(s) of provided sample data.
References
Arnold BC, Shavelle RM (1998). “Joint Confidence Sets for the Mean and Variance of a Normal Distribution.” The American Statistician, 52(2), 133–140.
Examples
## CRAN-purpose small example
mvar1.1998AS(rnorm(10))
## Not run:
## empirical Type 1 error
niter = 1000
counter = rep(0,niter) # record p-values
for (i in 1:niter){
x = rnorm(100) # sample x from N(0,1)
counter[i] = ifelse(mvar1.1998AS(x)$p.value < 0.05, 1, 0)
}
## print the result
cat(paste("\n* Example for 'mvar1.1998AS'\n","*\n",
"* number of rejections : ", sum(counter),"\n",
"* total number of trials : ", niter,"\n",
"* empirical Type 1 error : ",round(sum(counter/niter),5),"\n",sep=""))
## End(Not run)
[Package SHT version 0.1.8 Index]