mean2.2008SD {SHT}R Documentation

Two-sample Test for High-Dimensional Means by Srivastava and Du (2008)

Description

Given two multivariate data X and Y of same dimension, it tests

H_0 : \mu_x = \mu_y\quad vs\quad H_1 : \mu_x \neq \mu_y

using the procedure by Srivastava and Du (2008).

Usage

mean2.2008SD(X, Y)

Arguments

X

an (n_x \times p) data matrix of 1st sample.

Y

an (n_y \times p) data matrix of 2nd sample.

Value

a (list) object of S3 class htest containing:

statistic

a test statistic.

p.value

p-value under H_0.

alternative

alternative hypothesis.

method

name of the test.

data.name

name(s) of provided sample data.

References

Srivastava MS, Du M (2008). “A test for the mean vector with fewer observations than the dimension.” Journal of Multivariate Analysis, 99(3), 386–402. ISSN 0047259X.

Examples

## CRAN-purpose small example
smallX = matrix(rnorm(10*3),ncol=3)
smallY = matrix(rnorm(10*3),ncol=3)
mean2.2008SD(smallX, smallY) # run the test


## empirical Type 1 error 
niter   = 1000
counter = rep(0,niter)  # record p-values
for (i in 1:niter){
  X = matrix(rnorm(50*5), ncol=10)
  Y = matrix(rnorm(50*5), ncol=10)
  
  counter[i] = ifelse(mean2.2008SD(X,Y)$p.value < 0.05, 1, 0)
}

## print the result
cat(paste("\n* Example for 'mean2.2008SD'\n","*\n",
"* number of rejections   : ", sum(counter),"\n",
"* total number of trials : ", niter,"\n",
"* empirical Type 1 error : ",round(sum(counter/niter),5),"\n",sep=""))



[Package SHT version 0.1.8 Index]