cov2.2012LC {SHT} | R Documentation |
Two-sample Test for High-Dimensional Covariances by Li and Chen (2012)
Description
Given two multivariate data X
and Y
of same dimension, it tests
H_0 : \Sigma_x = \Sigma_y\quad vs\quad H_1 : \Sigma_x \neq \Sigma_y
using the procedure by Li and Chen (2012).
Usage
cov2.2012LC(X, Y, use.unbiased = TRUE)
Arguments
X |
an |
Y |
an |
use.unbiased |
a logical; |
Value
a (list) object of S3
class htest
containing:
- statistic
a test statistic.
- p.value
p
-value underH_0
.- alternative
alternative hypothesis.
- method
name of the test.
- data.name
name(s) of provided sample data.
References
Li J, Chen SX (2012). “Two sample tests for high-dimensional covariance matrices.” The Annals of Statistics, 40(2), 908–940. ISSN 0090-5364.
Examples
## CRAN-purpose small example
smallX = matrix(rnorm(10*4),ncol=5)
smallY = matrix(rnorm(10*4),ncol=5)
cov2.2012LC(smallX, smallY) # run the test
## Not run:
## empirical Type 1 error : use 'biased' version for faster computation
niter = 1000
counter = rep(0,niter)
for (i in 1:niter){
X = matrix(rnorm(500*25), ncol=10)
Y = matrix(rnorm(500*25), ncol=10)
counter[i] = ifelse(cov2.2012LC(X,Y,use.unbiased=FALSE)$p.value < 0.05,1,0)
print(paste0("iteration ",i,"/1000 complete.."))
}
## print the result
cat(paste("\n* Example for 'cov2.2012LC'\n","*\n",
"* number of rejections : ", sum(counter),"\n",
"* total number of trials : ", niter,"\n",
"* empirical Type 1 error : ",round(sum(counter/niter),5),"\n",sep=""))
## End(Not run)
[Package SHT version 0.1.8 Index]