| sfpl_approx {SFPL} | R Documentation |
Approximate Sparse Fused Plackett-Luce
Description
Contains an approximate (typically faster) version of the main function of this package that is used to estimate the parameter of interest \beta. We recommend this version
due to its (relatively) fast convergence.
Usage
sfpl_approx(x, y, ls_vec, lf_vec, epsilon, verbose)
Arguments
x |
A |
y |
A list consisting of |
ls_vec |
Vector containing shrinkage parameters. |
lf_vec |
Vector containing fusion penalty parameters. |
epsilon |
Small positive value used to ensure that the penalty function is differentiable. Typically set at |
verbose |
Boolean that returns the process of the parameter estimation. |
Value
beta_est |
A list of length ls_vec |
Author(s)
Sjoerd Hermes
Maintainer: Sjoerd Hermes sjoerd.hermes@wur.nl
References
1. Hermes, S., van Heerwaarden, J., and Behrouzi, P. (2024). Joint Learning from Heterogeneous Rank Data. arXiv preprint, arXiv:2407.10846
Examples
# we first obtain the rankings and object variables
data(ghana)
y <- list(ghana[[1]], ghana[[2]])
x <- ghana[[3]]
# our next step consists of creating two vectors for the penalty parameters
ls_vec <- lf_vec <- c(0, 0.25)
# we choose epsilon to be small: 10^(-5), as we did in Hermes et al., (2024)
# now we can fit our model
epsilon <- 10^(-5)
verbose <- FALSE
result <- sfpl_approx(x, y, ls_vec, lf_vec, epsilon, verbose)