sfpl {SFPL} | R Documentation |
Sparse Fused Plackett-Luce
Description
Contains the main function of this package that is used to estimate the parameter of interest \beta
. The inner workings of the function are described in Hermes et al., (2024).
Usage
sfpl(x, y, ls_vec, lf_vec, epsilon, verbose)
Arguments
x |
A |
y |
A list consisting of |
ls_vec |
Vector containing shrinkage parameters. |
lf_vec |
Vector containing fusion penalty parameters. |
epsilon |
Small positive value used to ensure that the penalty function is differentiable. Typically set at |
verbose |
Boolean that returns the process of the parameter estimation. |
Value
beta_est |
A list of length ls_vec |
Author(s)
Sjoerd Hermes
Maintainer: Sjoerd Hermes sjoerd.hermes@wur.nl
References
1. Hermes, S., van Heerwaarden, J., and Behrouzi, P. (2024). Joint Learning from Heterogeneous Rank Data. arXiv preprint, arXiv:2407.10846
Examples
# we first obtain the rankings and object variables
data(ghana)
y <- list(ghana[[1]], ghana[[2]])
x <- ghana[[3]]
# our next step consists of creating two vectors for the penalty parameters
ls_vec <- lf_vec <- c(0, 0.25)
# we choose epsilon to be small: 10^(-5), as we did in Hermes et al., (2024)
# now we can fit our model
epsilon <- 10^(-5)
verbose <- FALSE
result <- sfpl(x, y, ls_vec, lf_vec, epsilon, verbose)