| sfpl {SFPL} | R Documentation | 
Sparse Fused Plackett-Luce
Description
Contains the main function of this package that is used to estimate the parameter of interest \beta. The inner workings of the function are described in Hermes et al., (2024).
Usage
sfpl(x, y, ls_vec, lf_vec, epsilon, verbose)
Arguments
| x | A  | 
| y | A list consisting of  | 
| ls_vec | Vector containing shrinkage parameters. | 
| lf_vec | Vector containing fusion penalty parameters. | 
| epsilon | Small positive value used to ensure that the penalty function is differentiable. Typically set at  | 
| verbose | Boolean that returns the process of the parameter estimation. | 
Value
| beta_est | A list of length ls_vec | 
Author(s)
Sjoerd Hermes
Maintainer: Sjoerd Hermes sjoerd.hermes@wur.nl
References
1. Hermes, S., van Heerwaarden, J., and Behrouzi, P. (2024). Joint Learning from Heterogeneous Rank Data. arXiv preprint, arXiv:2407.10846 
Examples
# we first obtain the rankings and object variables
data(ghana)
y <- list(ghana[[1]], ghana[[2]])
x <- ghana[[3]]
# our next step consists of creating two vectors for the penalty parameters
ls_vec <- lf_vec <- c(0, 0.25)
# we choose epsilon to be small: 10^(-5), as we did in Hermes et al., (2024)
# now we can fit our model
epsilon <- 10^(-5)
verbose <- FALSE
result <- sfpl(x, y, ls_vec, lf_vec, epsilon, verbose)