path_to_network {SEset} | R Documentation |
Precision matrix from ordered path model
Description
Takes a path model and generates the corresponding (standardized) precision matrix or
covariance matrix. The inverse of network_to_path
.
Usage
path_to_network(B, psi = NULL, output = "precision")
Arguments
B |
input |
psi |
variance-covariance matrix for the residuals. If NULL (the default) will impose the constraint that the variables have variance 1 and the residuals are uncorrelated |
output |
Function returns the precision ("precision") or covariance ("covariance") matrix |
Value
a p \times p
precision or covariance matrix
References
Ryan O, Bringmann LF, Schuurman NK (upcoming). “The challenge of generating causal hypotheses using network models.” in preperation.
Shojaie A, Michailidis G (2010). “Penalized likelihood methods for estimation of sparse high-dimensional directed acyclic graphs.” Biometrika, 97(3), 519–538.
Bollen KA (1989). Structural equations with latent variables. Oxford, England, John Wiley \& Sons.
See Also
network_to_path
, SEset_to_network