network_to_SEset {SEset} | R Documentation |
SE-set from precision matrix
Description
Takes a precision matrix and generates the SE-set, a set of statistically equivalent path models. Unless otherwise specified, the SEset will contain one weights matrix for every possible topological ordering of the input precision matrix
Usage
network_to_SEset(
omega,
orderings = NULL,
digits = 20,
rm_duplicates = FALSE,
input_type = "precision"
)
Arguments
omega |
input |
orderings |
An optional matrix of |
digits |
desired rounding of the output weights matrices in the SE-set, in decimal places. Defaults to 20. |
rm_duplicates |
Logical indicating whether only unique DAGs should be returned |
input_type |
specifies what type of matrix 'omega' is. default is "precision", other options include a matrix of partial correlations ("parcor") or a model implied covariance or correlation matrix "MIcov" |
Value
a p! \times p
matrix containing the SE-set
(or n \times p
matrix if a custom set of n
orderings is specified).
Each row represents a lower-triangular weights matrix, stacked column-wise.
References
Ryan O, Bringmann LF, Schuurman NK (upcoming). “The challenge of generating causal hypotheses using network models.” in preperation.
Shojaie A, Michailidis G (2010). “Penalized likelihood methods for estimation of sparse high-dimensional directed acyclic graphs.” Biometrika, 97(3), 519–538.
Bollen KA (1989). Structural equations with latent variables. Oxford, England, John Wiley \& Sons.
See Also
network_to_path
, reorder_mat
, order_gen
Examples
# first estimate the precision matrix
data(riskcor)
omega <- (qgraph::EBICglasso(riskcor, n = 69, returnAllResults = TRUE))$optwi
# qgraph method estimates a non-symmetric omega matrix, but uses forceSymmetric to create
# a symmetric matrix (see qgraph:::EBICglassoCore line 65)
omega <- as.matrix(Matrix::forceSymmetric(omega)) # returns the precision matrix
SE <- network_to_SEset(omega, digits=3)
# each row of SE defines a path-model weights matrix.
# We can extract element 20 by writing it to a matrix
example <- matrix(SE[20,],6,6)
# Example path model can be plotted as a weighted DAG
pos <- matrix(c(2,0,-2,-1,-2,1,0,2,0.5,0,0,-2),6,2,byrow=TRUE)
# qgraph reads matrix elements as "from row to column"
# regression weights matrices are read "from column to row"
# path model weights matrix must be transposed for qgraph
qgraph::qgraph(t(example), labels=rownames(riskcor), layout=pos,
repulsion=.8, vsize=c(10,15), theme="colorblind", fade=FALSE)