getbinPost {SEL}R Documentation

Calculate posterior distribution for binomial model

Description

Calculate posterior distribution for the simple beta-binomial model

Usage

  getbinPost(x, object, k, n, type = c("density", "cdf"),
             rel.tol = .Machine$double.eps^0.5)

Arguments

x

Vector specifying, where posterior distribution should be evaluated.

object

An SEL object.

k

Number of observed successes in the binomial model.

n

Number of total trials.

type

Character specifying, whether posterior density or cdf should be evaluated.

rel.tol

rel.tol argument of the integrate subroutine, which numerically calculates the normalization constant, when a non-conjugate prior is used (ie a B-spline basis not leading to a Bernstein mixture).

Value

Numeric containing the function values corresponding to x values

Author(s)

Bjoern Bornkamp

References

Bornkamp, B. and Ickstadt, K. (2009). A Note on B-Splines for Semiparametric Elicitation. The American Statistician, 63, 373–377

Diaconis, P., and Ylvisaker, D. (1985), Quantifying Prior Opinion, Bayesian Statistics 2, (eds.) J.M. Bernardo, M.H. DeGroot, D.V. Lindley and A.F.M. Smith, Elsevier Science Publishers B.V., Amsterdam, pp. 133–156.

See Also

SEL

Examples

## Diaconis, Ylvisaker spun coin example (see references)
## simulate elicitations
x <- seq(0, 1, length=9)[2:8]
ymu <- 0.5*pbeta(x, 10, 20)+0.5*pbeta(x, 20, 10)
sig <- 0.05
set.seed(4)
y <- ymu+rnorm(7, 0, sqrt(ymu*(1-ymu))*sig)

## perform fitting with different selections
A <- SEL(x, y, d = 1, Delta = 0.001, inknts = x)
foo1 <- function(x) dbeta(x, 0.5, 0.5)
B <- SEL(x, y, d = 19, N=0, Delta = 0.02, pistar = foo1)
C <- SEL(x, y, d = 19, N=0, Delta = 0.05, pistar = foo1)
comparePlot(A, B, C, addArgs = list(layout = c(3,1)))

## posterior
sq <- seq(0,1,length=201)
res1 <- getbinPost(sq, A, 3, 10, type = "density")
res2 <- getbinPost(sq, B, 3, 10, type = "density")
res3 <- getbinPost(sq, C, 3, 10, type = "density")

## parametric posterior (corresponding to B(0.5,0.5) prior)
plot(sq, dbeta(sq, 3.5, 7.5), type="l", xlab = "",
     ylab = "Posterior density", lty = 4,
     ylim=c(0,max(c(res1, res2, res3))))
## "semiparametric" posteriors
lines(sq, res1, lty = 1)
lines(sq, res2, lty = 2)
lines(sq, res3, lty = 3)
legend(0.65,4, legend=c("Scenario A", "Scenario B", "Scenario C",
       "B(0.5,0.5) prior"), lty = 1:4)

[Package SEL version 1.0-4 Index]