SE.EQ {SE.EQ} | R Documentation |
The SE-test for equivalence
Description
The function SE.EQ()
implements the SE-test for equivalence according to
Hoffelder et al. (2015). It is a multivariate two-sample equivalence procedure.
Distance measure of the test is the sum of standardized differences between the
expected values or in other words: the sum of effect sizes of all components
of the two multivariate samples.
Usage
SE.EQ(X, Y, eq_margin, alpha = 0.05, print.results = TRUE)
Arguments
X |
numeric data matrix of the first sample (REF). The rows of |
Y |
numeric data matrix of the second sample (TEST). The rows of |
eq_margin |
numeric (>0). The equivalence margin of the test. |
alpha |
numeric (0< |
print.results |
logical; if TRUE (default) summary statistics and test results are printed in the output. If FALSE no output is created |
Details
This function implements the SE-test for equivalence. Distance measure of the test is the sum of standardized differences between the expected values or in other words: the sum of effect sizes of all components of the two multivariate samples. The test is an asymptotically valid test for normally distributed data (see Hoffelder et al.,2015).
Value
a data frame; three columns containing the results of the test
p.value |
numeric; the p-value of the SE test for equivalence |
testresult.num |
numeric; 0 (null hypothesis of nonequivalence not rejected) or 1 (null hypothesis of nonequivalence rejected, decision in favor of equivalence) |
testresult.text |
character; test result of the test in text mode |
Author(s)
Thomas Hoffelder <thomas.hoffelder at boehringer-ingelheim.com>
References
Hoffelder, T., Goessl, R., Wellek, S. (2015). Multivariate Equivalence Tests for Use in Pharmaceutical Development. Journal of Biopharmaceutical Statistics, 25:3, 417-437. URL: http://dx.doi.org/10.1080/10543406.2014.920344
Examples
# A reproduction of the three-dimensional SE example evaluation
# in Hoffelder et al. (2015) can be done with the following code:
data(ex_data_JoBS)
REF_JoBS <- cbind(ex_data_JoBS[ which(ex_data_JoBS$Group=='REF'), ]
[c("Diss_15_min","Diss_20_min","Diss_25_min")])
TEST_JoBS <- cbind(ex_data_JoBS[ which(ex_data_JoBS$Group=='TEST'), ]
[c("Diss_15_min","Diss_20_min","Diss_25_min")])
equivalence_margin_SE_JoBS <- 0.74^2
test_SE_JoBS <- SE.EQ(X=REF_JoBS
, Y=TEST_JoBS
, eq_margin=equivalence_margin_SE_JoBS
, print.results = TRUE)