tss {SDMtune} | R Documentation |
True Skill Statistics
Description
Compute the max TSS of a given model.
Usage
tss(model, test = NULL)
Arguments
model |
SDMmodel or SDMmodelCV object. |
test |
SWD object when |
Details
For SDMmodelCV objects, the function computes the
mean of the training TSS values of the k-folds. If test = TRUE
it computes
the mean of the testing TSS values for the k-folds. If test is an
SWD object, it computes the mean TSS values for the provided
testing dataset.
Value
The value of the TSS of the given model.
Author(s)
Sergio Vignali
References
Allouche O., Tsoar A., Kadmon R., (2006). Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43(6), 1223–1232.
See Also
Examples
# Acquire environmental variables
files <- list.files(path = file.path(system.file(package = "dismo"), "ex"),
pattern = "grd",
full.names = TRUE)
predictors <- terra::rast(files)
# Prepare presence and background locations
p_coords <- virtualSp$presence
bg_coords <- virtualSp$background
# Create SWD object
data <- prepareSWD(species = "Virtual species",
p = p_coords,
a = bg_coords,
env = predictors,
categorical = "biome")
# Split presence locations in training (80%) and testing (20%) datasets
datasets <- trainValTest(data,
test = 0.2,
only_presence = TRUE)
train <- datasets[[1]]
test <- datasets[[2]]
# Train a model
model <- train(method = "Maxnet",
data = train,
fc = "l")
# Compute the training TSS
tss(model)
# Compute the testing TSS
tss(model,
test = test)
# Same example but using cross validation instead of training and
# testing datasets. Create 4 random folds splitting only the presence
# locations
folds = randomFolds(train,
k = 4,
only_presence = TRUE)
model <- train(method = "Maxnet",
data = train,
fc = "l",
folds = folds)
# Compute the training TSS
tss(model)
# Compute the testing TSS
tss(model,
test = TRUE)
# Compute the TSS for the held apart testing dataset
tss(model,
test = test)