mpost.euc {SBmedian}R Documentation

Median Posterior for Subset Posterior Samples in Euclidean Space

Description

mpost.euc is a general framework to merge multiple empirical measures Q_1,Q_2,\ldots,Q_M \subset R^p from independent subset of data by finding a median

\hat{Q} = \textrm{argmin}_Q \sum_{m=1}^M d(Q,Q_m)

where Q is a weighted combination and d(P_1,P_2) is distance in RKHS between two empirical measures P_1 and P_2. As in the references, we use RBF kernel with bandwidth parameter \sigma.

Usage

mpost.euc(
  splist,
  sigma = 0.1,
  maxiter = 121,
  abstol = 1e-06,
  show.progress = FALSE
)

Arguments

splist

a list of length M containing vectors or matrices of univariate or multivariate subset posterior samples respectively.

sigma

bandwidth parameter for RBF kernel.

maxiter

maximum number of iterations for Weiszfeld algorithm.

abstol

stopping criterion for Weiszfeld algorithm.

show.progress

a logical; TRUE to show iteration mark, FALSE otherwise.

Value

a named list containing:

med.atoms

a vector or matrix of all atoms aggregated.

med.weights

a weight vector that sums to 1 corresponding to med.atoms.

weiszfeld.weights

a weight for M subset posteriors.

weiszfeld.history

updated parameter values. Each row is for iteration, while columns are weights corresponding to weiszfeld.weights.

References

Minsker S, Srivastava S, Lin L, Dunson DB (2014). “Scalable and Robust Bayesian Inference via the Median Posterior.” In Proceedings of the 31st International Conference on International Conference on Machine Learning - Volume 32, ICML’14, II–1656–II–1664. event-place: Beijing, China.

Minsker S, Srivastava S, Lin L, Dunson DB (2017). “Robust and Scalable Bayes via a Median of Subset Posterior Measures.” Journal of Machine Learning Research, 18(124), 1–40. https://jmlr.org/papers/v18/16-655.html.

Examples

## Median Posteior from 2-D Gaussian Samples
#  Step 1. let's build a list of atoms whose numbers differ
set.seed(8128)                   # for reproducible results
mydata = list()
mydata[[1]] = cbind(rnorm(96, mean= 1), rnorm(96, mean= 1))
mydata[[2]] = cbind(rnorm(78, mean=-1), rnorm(78, mean= 0))
mydata[[3]] = cbind(rnorm(65, mean=-1), rnorm(65, mean= 1))
mydata[[4]] = cbind(rnorm(77, mean= 2), rnorm(77, mean=-1))

#  Step 2. Let's run the algorithm
myrun = mpost.euc(mydata, show.progress=TRUE)

#  Step 3. Visualize
#  3-1. show subset posterior samples
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,3), no.readonly=TRUE)
for (i in 1:4){
  plot(mydata[[i]], cex=0.5, col=(i+1), pch=19, xlab="", ylab="", 
       main=paste("subset",i), xlim=c(-4,4), ylim=c(-3,3))
}

#  3-2. 250 median posterior samples via importance sampling
id250 = base::sample(1:nrow(myrun$med.atoms), 250, prob=myrun$med.weights, replace=TRUE)
sp250 = myrun$med.atoms[id250,]
plot(sp250, cex=0.5, pch=19, xlab="", ylab="", 
     xlim=c(-4,4), ylim=c(-3,3), main="median samples")

#  3-3. convergence over iterations
matplot(myrun$weiszfeld.history, xlab="iteration", ylab="value",
        type="b", main="convergence of weights")
par(opar)
        

[Package SBmedian version 0.1.1 Index]