| wasserstein {SBCK} | R Documentation | 
wasserstein distance
Description
Compute wasserstein distance between two dataset or SparseHist X and Y
Usage
wasserstein(X, Y, p = 2, ot = SBCK::OTNetworkSimplex$new())
Arguments
X | 
 [matrix or SparseHist] If matrix, dim = ( nrow = n_samples, ncol = n_features)  | 
Y | 
 [matrix or SparseHist] If matrix, dim = ( nrow = n_samples, ncol = n_features)  | 
p | 
 [float] Power of the metric (default = 2)  | 
ot | 
 [Optimal transport solver]  | 
Value
[float] value of distance
References
Wasserstein, L. N. (1969). Markov processes over denumerable products of spaces describing large systems of automata. Problems of Information Transmission, 5(3), 47-52.
Examples
X = base::cbind( stats::rnorm(2000) , stats::rnorm(2000)  )
Y = base::cbind( stats::rnorm(2000,mean=10)  , stats::rnorm(2000) )
bw = base::c(0.1,0.1)
muX = SBCK::SparseHist( X , bw )
muY = SBCK::SparseHist( Y , bw )
## The four are equals
w2 = SBCK::wasserstein(X,Y)
w2 = SBCK::wasserstein(muX,Y)
w2 = SBCK::wasserstein(X,muY)
w2 = SBCK::wasserstein(muX,muY)
[Package SBCK version 1.0.0 Index]