MVQuantilesShuffle {SBCK} | R Documentation |
MVQuantilesShuffle
Description
Multivariate Schaake shuffle using the quantiles.
Details
Used to reproduce the dependence structure of a dataset to another dataset
Public fields
col_cond
[vector] Conditionning columns
col_ucond
[vector] Un-conditionning columns
lag_search
[integer] Number of lags to transform the dependence structure
lag_keep
[integer] Number of lags to keep
n_features
[integer] Number of features (dimensions), internal
qY
[matrix] Quantile structure fitted, internal
bsYc
[matrix] Block search fitted, internal
Methods
Public methods
Method new()
Create a new MVQuantilesShuffle object.
Usage
MVQuantilesShuffle$new(col_cond = base::c(1), lag_search = 1, lag_keep = 1)
Arguments
col_cond
Conditionning colum
lag_search
Number of lags to transform the dependence structure
lag_keep
Number of lags to keep
Returns
A new 'MVQuantilesShuffle' object.
Method fit()
Fit method
Usage
MVQuantilesShuffle$fit(Y)
Arguments
Y
[vector] Dataset to infer the dependance structure
Returns
NULL
Method transform()
Transform method
Usage
MVQuantilesShuffle$transform(X)
Arguments
X
[vector] Dataset to match the dependance structure with the Y fitted
Returns
Z The X with the quantiles structure of Y
Method clone()
The objects of this class are cloneable with this method.
Usage
MVQuantilesShuffle$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
References
Vrac, M. et S. Thao (2020). “R2 D2 v2.0 : accounting for temporal dependences in multivariate bias correction via analogue rank resampling”. In : Geosci. Model Dev. 13.11, p. 5367-5387. doi :10.5194/gmd-13-5367-2020.
Examples
## Generate sample
X = matrix( stats::rnorm( n = 100 ) , ncol = 4 )
Y = matrix( stats::rnorm( n = 100 ) , ncol = 4 )
## Fit dependence structure
## Assume that the link beween column 2 and 4 is correct, and change also
## the auto-correlation structure until lag 3 = lag_keep - 1
mvq = MVQuantilesShuffle$new( base::c(2,4) , lag_search = 6 , lag_keep = 4 )
mvq$fit(Y)
Z = mvq$transform(X)