| BaumWelch {SAutomata} | R Documentation | 
Inferring the Forward and Backward Probabilities of a Stochastic Automata Model via the Baum-Welch algorithm
Description
For an initial Stochastic Automata Model (SA) and a given sequence of observations, the Baum-Welch algorithm infers optimal forward and backward probabilities to the SA. Since the Baum-Welch algorithm is a variant of the Expectation-Maximisation algorithm, the algorithm converges to a local solution which might not be the global optimum.
Usage
BaumWelch(initsa, x, y, m, error, theta = NULL)
Arguments
initsa | 
 A Stochastic Automata Model.  | 
x | 
 A sequence of inputs.  | 
y | 
 A sequence of outputs.  | 
m | 
 Maximum length of sequence to create sample set for learning.  | 
error | 
 Maximum error rate.  | 
theta | 
 Optional Conditional Probabilities.  | 
Value
Returns the conditional probabilities by learning the sample set.
Examples
states<-c('s1','s2')
inputSymbols<-c('a','b')
outputSymbols<-c(0,1)
transProb<-matrix(c(0.70,0.50, 0.30,0.50), nrow = 2, ncol = 2,byrow = TRUE)
emissionProb<-matrix(c(0.50,0.30, 0.40,0.60,.50,.70,.60,.40), nrow = 2, ncol = 4, byrow = TRUE)
initsa<-initSA(states,inputSymbols,outputSymbols,emissionProb,transProb)
x<-c('b','a')
y<-c(0,1)
m<-1
error<-10
BaumWelch(initsa, x, y, m, error)
[Package SAutomata version 0.1.0 Index]