SCH23390 {SARP.compo} | R Documentation |
Effect of MDMA and SCH23390 on gene expression
Description
This data set gives the mRNA quantification of several genes involved in the dopamin pathway in four different conditions: control, after addition of MDMA, after addition of SCH23390 and after addition of both.
Usage
data(SCH23390)
Format
A data frame with 8 columns and 48 rows. Each row gives the quantification results, expressed in cycle threshold (CT):
Groupe | factor | The group label |
MDMA | factor | MDMA addition indicator (Oui=Yes, Non=No) |
SCH23390 | factor | SCH23390 addition indicator (as above) |
Hprt | numeric | CT for the hprt gene, use as reference gene |
Fos,Fosb,Egr1,Egr2 | numeric | CT for the four genes of interest |
Source
Original data communicated by the authors of the paper.
References
N. Benturquia, C. Courtin, F. Noble, and C. Marie-Claire (2008). Involvement of D1 dopamine receptor in MDMA-induced locomotor activity and striatal gene expression in mice. Brain Research, 1211, 1-5
Examples
data( SCH23390 )
# Optimal cut-off for five genes and alpha = 0.05
# is around 0.13
# First step, experimental check
#
# MDMA should change expression levels of all genes but the reference
# 1) extract the data for the Ctrl vs MDMA groups comparison
d.MDMA <- SCH23390[ which( SCH23390$Groupe %in% c( 'Ctrl', 'MDMA' ) ), ]
M.MDMA <- creer.Mp( d = d.MDMA, noms = names( d.MDMA )[ 4:8 ], log = TRUE,
f.p = student.fpc, v.X = 'MDMA' )
# 2) L'arbre associƩ
plot( arbre.Mp( M.MDMA, reference = 'Hprt' ),
seuil.p = c( 0.137, 0.128, 0.147 ) )
# 3) Le graphe pour le seuil optimal
# => indeed, all genes are modified by MDMA
# Fos and Fosb seems to have the same behavior
plot( grf.Mp( M.MDMA, reference = 'Hprt', p = 0.13 ) )
# Second step, experiment analysis
# Does SCH23390 modulate the MDMA effect?
# => interaction term in a two-ways analysis of variance
M.I <- creer.Mp( d = SCH23390, noms = names( SCH23390 )[ 4:8 ], log = TRUE,
f.p = anva_SC.fpc,
frm = R ~ MDMA + SCH23390 + MDMA:SCH23390, SC = 3 )
# 2) L'arbre associƩ
plot( arbre.Mp( M.I, reference = 'Hprt' ),
seuil.p = c( 0.137, 0.128, 0.147 ) )
# 3) Le graphe pour le seuil optimal
# => no clear detection of interaction
plot( grf.Mp( M.I, reference = 'Hprt', p = 0.13 ) )
[Package SARP.compo version 0.1.8 Index]