predict.cv.ernet {SALES} | R Documentation |
Make predictions from a cv.ernet object
Description
This function makes predictions from a cross-validated ernet model, using
the fitted cv.ernet
object, and the optimal value chosen for
lambda
.
Usage
## S3 method for class 'cv.ernet'
predict(object, newx, s = c("lambda.1se", "lambda.min"), ...)
Arguments
object |
fitted |
newx |
matrix of new values for |
s |
value(s) of the penalty parameter |
... |
not used. Other arguments to predict. |
Details
This function makes it easier to use the results of cross-validation to make a prediction.
Value
The object returned depends the ... argument which is passed on
to the predict
method for ernet
objects.
Author(s)
Yuwen Gu and Hui Zou
Maintainer: Yuwen Gu <yuwen.gu@uconn.edu>
See Also
cv.ernet
, coef.cv.ernet
,
plot.cv.ernet
Examples
set.seed(1)
n <- 100
p <- 400
x <- matrix(rnorm(n * p), n, p)
y <- rnorm(n)
tau <- 0.90
pf <- abs(rnorm(p))
pf2 <- abs(rnorm(p))
lambda2 <- 1
m1.cv <- cv.ernet(y = y, x = x, tau = tau, eps = 1e-8, pf = pf,
pf2 = pf2, standardize = FALSE, intercept = FALSE,
lambda2 = lambda2)
as.vector(predict(m1.cv, newx = x, s = "lambda.min"))