urhyperbolic {Runuran} | R Documentation |
UNU.RAN Hyperbolic random variate generator
Description
UNU.RAN random variate generator for the Hyperbolic distribution
with parameters shape
and scale
.
It also allows sampling from the truncated distribution.
[Special Generator] – Sampling Function: Hyperbolic.
Usage
urhyperbolic(n, shape, scale=1, lb = -Inf, ub = Inf)
Arguments
n |
size of required sample. |
shape |
(strictly positive) shape parameter. |
scale |
(strictly positive) scale parameter. |
lb |
lower bound of (truncated) distribution. |
ub |
upper bound of (truncated) distribution. |
Details
If scale
is omitted, it assumes the default value of 1
.
The Hyperbolic distribution with parameters shape
=\alpha
and scale
=\sigma
has density proportional to
f(x) \sim \exp(-\alpha \sqrt{1+(\frac{x}{s})^2})
for all x
, \alpha > 0
and \sigma > 0
.
The generation algorithm uses transformed density rejection ‘TDR’. The
parameters lb
and ub
can be used to generate variates from
the Hyperbolic distribution truncated to the interval (lb
,ub
).
Note
This function is wrapper for the UNU.RAN class in R.
Do not confuse with rhyper
that samples from the (discrete) hypergeometric distribution.
Author(s)
Josef Leydold and Wolfgang H\"ormann unuran@statmath.wu.ac.at.
References
W. H\"ormann, J. Leydold, and G. Derflinger (2004): Automatic Nonuniform Random Variate Generation. Springer-Verlag, Berlin Heidelberg
See Also
runif
and .Random.seed
about random number
generation and unuran
for the UNU.RAN class.
Examples
## Create a sample of size 1000 from Hyperbolic distribution with shape=3
x <- urhyperbolic(n=1000,shape=3)