udvg {Runuran} | R Documentation |
UNU.RAN object for Variance Gamma distribution
Description
Create UNU.RAN object for a Variance Gamma distribution
with shape parameter lambda
, shape parameter
alpha
, asymmetry (shape) parameter beta
, and
location parameter mu
.
[Distribution] – Variance Gamma.
Usage
udvg(lambda, alpha, beta, mu, lb=-Inf, ub=Inf)
Arguments
lambda |
shape parameter (must be strictly positive). |
alpha |
shape parameter (must be strictly larger than
absolute value of |
beta |
asymmetry (shape) parameter. |
mu |
location parameter. |
lb |
lower bound of (truncated) distribution. |
ub |
upper bound of (truncated) distribution. |
Details
The variance gamma distribution with parameters
\lambda
, \alpha
, \beta
, and \mu
has density
f(x) = \kappa \;
|x-\mu|^{\lambda-1/2}
\cdot \exp(\beta(x-\mu))
\cdot K_{\lambda-1/2}\left(\alpha|x-\mu|\right)
where the normalization constant is given by
\kappa =
\frac{\left(\alpha^2 - \beta^2\right)^{\lambda}}{
\sqrt{\pi} \, (2 \alpha)^{\lambda-1/2} \,
\Gamma\left(\lambda\right)}
K_{\lambda}(t)
is the modified Bessel function of
the third kind with index \lambda
.
\Gamma(t)
is the Gamma function.
Notice that \alpha>|\beta|
and
\lambda>0
.
The domain of the distribution can be truncated to the
interval (lb
,ub
).
Value
An object of class "unuran.cont"
.
Note
For \lambda \le 0.5
, the density has a pole at
\mu
.
Author(s)
Josef Leydold and Kemal Dingec unuran@statmath.wu.ac.at.
References
Eberlein, E., von Hammerstein, E. A., 2004. Generalized hyperbolic and inverse Gaussian distributions: limiting cases and approximation of processes. In Seminar on Stochastic Analysis, Random Fields and Applications IV, Progress in Probability 58, R. C. Dalang, M. Dozzi, F. Russo (Eds.), Birkhauser Verlag, p. 221–264.
Madan, D. B., Seneta, E., 1990. The variance gamma (V.G.) model for share market returns. Journal of Business, Vol. 63, p. 511–524.
Raible, S., 2000. L\'evy Processes in Finance: Theory, Numerics, and Empirical Facts. Ph.D. thesis, University of Freiburg.
See Also
Examples
## Create distribution object for variance gamma distribution
distr <- udvg(lambda=2.25, alpha=210.5, beta=-5.14, mu=0.00094)
## Generate generator object; use method PINV (inversion)
gen <- pinvd.new(distr)
## Draw a sample of size 100
x <- ur(gen,100)