udt {Runuran} | R Documentation |
UNU.RAN object for Student t distribution
Description
Create UNU.RAN object for a Student t distribution with
with df
degrees of freedom.
[Distribution] – t (Student).
Usage
udt(df, lb=-Inf, ub=Inf)
Arguments
df |
degrees of freedom (strictly positive). Non-integer values allowed. |
lb |
lower bound of (truncated) distribution. |
ub |
upper bound of (truncated) distribution. |
Details
The t
distribution with df
= \nu
degrees of
freedom has density
f(x) = \frac{\Gamma ((\nu+1)/2)}{\sqrt{\pi \nu} \Gamma (\nu/2)}
(1 + x^2/\nu)^{-(\nu+1)/2}
for all real x
.
It has mean 0
(for \nu > 1
) and
variance \frac{\nu}{\nu-2}
(for \nu > 2
).
The domain of the distribution can be truncated to the
interval (lb
,ub
).
Value
An object of class "unuran.cont"
.
Author(s)
Josef Leydold and Wolfgang H\"ormann unuran@statmath.wu.ac.at.
References
N.L. Johnson, S. Kotz, and N. Balakrishnan (1995): Continuous Univariate Distributions, Volume 2. 2nd edition, John Wiley & Sons, Inc., New York. Chap. 28, p. 362.
See Also
Examples
## Create distribution object for t distribution
distr <- udt(df=4)
## Generate generator object; use method PINV (inversion)
gen <- pinvd.new(distr)
## Draw a sample of size 100
x <- ur(gen,100)