udmeixner {Runuran} | R Documentation |
UNU.RAN object for Meixner distribution
Description
Create UNU.RAN object for a Meixner distribution
with scale parameter alpha
,
asymmetry (shape) parameter beta
,
shape parameter delta
and
location parameter mu
.
[Distribution] – Meixner.
Usage
udmeixner(alpha, beta, delta, mu, lb=-Inf, ub=Inf)
Arguments
alpha |
scale parameter (must be strictly positive). |
beta |
asymmetry (shape) parameter
(must be larger than |
delta |
shape parameter (must be strictly positive). |
mu |
location parameter. |
lb |
lower bound of (truncated) distribution. |
ub |
upper bound of (truncated) distribution. |
Details
The Mexiner distribution with parameters
\alpha
, \beta
, \delta
, and \mu
has density
f(x) = \kappa \,\exp(\beta(x-\mu)/\alpha)
\, |\Gamma\left(\delta+ i(x-\mu)/\alpha\right)|^2
where the normalization constant is given by
\kappa =
\frac{\left(2\cos\left(\beta/2\right)\right)^{2\delta}}{
2 \alpha \pi \, \Gamma\left(2 \delta\right)}
The symbol i
denotes the imaginary unit, that is, we have to
evaluate the gamma function \Gamma(z)
for complex
arguments z= x + i\,y
.
Notice that \alpha>0
, |\beta| < \pi
and \delta>0
.
The domain of the distribution can be truncated to the
interval (lb
,ub
).
Value
An object of class "unuran.cont"
.
Author(s)
Josef Leydold and Kemal Dingec unuran@statmath.wu.ac.at.
References
Grigelionis, B., 1999. Processes of Meixner type. Lithuanian Mathematical Journal, Vol. 39, p. 33–41.
Schoutens, W., 2001. The Meixner Processes in Finance. Eurandom Report 2001-002, Eurandom, Eindhoven.
See Also
Examples
## Create distribution object for meixner distribution
distr <- udmeixner(alpha=0.0298, beta=0.1271, delta=0.5729, mu=-0.0011)
## Generate generator object; use method PINV (inversion)
gen <- pinvd.new(distr)
## Draw a sample of size 100
x <- ur(gen,100)