udlnorm {Runuran} | R Documentation |
UNU.RAN object for Log Normal distribution
Description
Create UNU.RAN object for a Log Normal distribution
whose logarithm has mean equal to meanlog
and standard
deviation equal to sdlog
.
[Distribution] – Log Normal.
Usage
udlnorm(meanlog=0, sdlog=1, lb=0, ub=Inf)
Arguments
meanlog |
mean of the distribution on the log scale. |
sdlog |
standard deviation of the distribution on the log scale. |
lb |
lower bound of (truncated) distribution. |
ub |
upper bound of (truncated) distribution. |
Details
The log normal distribution has density
f(x) =
\frac{1}{\sqrt{2 \pi} \sigma x} \exp{- (\log(x)-\mu)^2 / (2 sigma^2)}
where \mu
is the mean and \sigma
the standard
deviation of the logarithm.
The domain of the distribution can be truncated to the
interval (lb
,ub
).
Value
An object of class "unuran.cont"
.
Author(s)
Josef Leydold and Wolfgang H\"ormann unuran@statmath.wu.ac.at.
References
N.L. Johnson, S. Kotz, and N. Balakrishnan (1994): Continuous Univariate Distributions, Volume 1. 2nd edition, John Wiley & Sons, Inc., New York. Chap. 14, p. 207.
See Also
Examples
## Create distribution object for log normal distribution
distr <- udlnorm()
## Generate generator object; use method PINV (inversion)
gen <- pinvd.new(distr)
## Draw a sample of size 100
x <- ur(gen,100)