udhyperbolic {Runuran} | R Documentation |
UNU.RAN object for Hyperbolic distribution
Description
Create UNU.RAN object for a Hyperbolic distribution
with location parameter mu
, tail (shape) parameter
alpha
, asymmetry (shape) parameter beta
, and scale
parameter delta
.
[Distribution] – Hyperbolic.
Usage
udhyperbolic(alpha, beta, delta, mu, lb=-Inf, ub=Inf)
Arguments
alpha |
tail (shape) parameter (must be strictly larger than
absolute value of |
beta |
asymmetry (shape) parameter. |
delta |
scale parameter (must be strictly positive). |
mu |
location parameter. |
lb |
lower bound of (truncated) distribution. |
ub |
upper bound of (truncated) distribution. |
Details
The hyperbolic distribution with parameters
\mu
,\alpha
,\beta
, and
\delta
has density proportional to
f(x) = \exp( -\alpha \sqrt(\delta^2 + (x - \mu)^2) + \beta*(x-\mu) )
where \alpha>|\beta|
and
\delta>0
.
The domain of the distribution can be truncated to the
interval (lb
,ub
).
Value
An object of class "unuran.cont"
.
Author(s)
Josef Leydold and Wolfgang H\"ormann unuran@statmath.wu.ac.at.
See Also
Examples
## Create distribution object for hyperbolic distribution
distr <- udhyperbolic(alpha=3,beta=2,delta=1,mu=0)
## Generate generator object; use method PINV (inversion)
gen <- pinvd.new(distr)
## Draw a sample of size 100
x <- ur(gen,100)