udhyper {Runuran} | R Documentation |
UNU.RAN object for Hypergeometric distribution
Description
Create UNU.RAN object for a Hypergeometric distribution with
parameters m
, n
, and k
.
[Distribution] – Hypergeometric.
Usage
udhyper(m, n, k, lb=max(0,k-n), ub=min(k,m))
Arguments
m |
the number of white balls in the urn. |
n |
the number of black balls in the urn. |
k |
the number of balls drawn from the urn. |
lb |
lower bound of (truncated) distribution. |
ub |
upper bound of (truncated) distribution. |
Details
The Hypergeometric distribution is used for sampling without
replacement. The density of this distribution with parameters
m
, n
and k
(named Np
, N-Np
, and
n
, respectively in the reference below) is given by
p(x) = \left. {m \choose x}{n \choose k-x} \right/ {m+n \choose k}
for x = 0, \ldots, k
.
The domain of the distribution can be truncated to the
interval (lb
,ub
).
Value
An object of class "unuran.discr"
.
Author(s)
Josef Leydold and Wolfgang H\"ormann unuran@statmath.wu.ac.at.
References
N.L. Johnson, S. Kotz, and A.W. Kemp (1992): Univariate Discrete Distributions. 2nd edition, John Wiley & Sons, Inc., New York. Chap. 6, p. 237.
Examples
## Create distribution object for Hypergeometric distribution
dist <- udhyper(m=15,n=5,k=7)
## Generate generator object; use method DGT (inversion)
gen <- dgtd.new(dist)
## Draw a sample of size 100
x <- ur(gen,100)