udf {Runuran} | R Documentation |
UNU.RAN object for F distribution
Description
Create UNU.RAN object for an F distribution with mean
with df1
and df2
degrees of freedom.
[Distribution] – F.
Usage
udf(df1, df2, lb=0, ub=Inf)
Arguments
df1 , df2 |
(strictly positive) degrees of freedom. Non-integer values allowed. |
lb |
lower bound of (truncated) distribution. |
ub |
upper bound of (truncated) distribution. |
Details
The F distribution with df1 =
n_1
and df2 =
n_2
degrees of freedom has density
f(x) = \frac{\Gamma(n_1/2 + n_2/2)}{\Gamma(n_1/2)\Gamma(n_2/2)}
\left(\frac{n_1}{n_2}\right)^{n_1/2} x^{n_1/2 -1}
\left(1 + \frac{n_1 x}{n_2}\right)^{-(n_1 + n_2) / 2}
for x > 0
.
The domain of the distribution can be truncated to the
interval (lb
,ub
).
Value
An object of class "unuran.cont"
.
Author(s)
Josef Leydold and Wolfgang H\"ormann unuran@statmath.wu.ac.at.
References
N.L. Johnson, S. Kotz, and N. Balakrishnan (1995): Continuous Univariate Distributions, Volume 2. 2nd edition, John Wiley & Sons, Inc., New York. Chap. 27, p. 332
See Also
Examples
## Create distribution object for F distribution
distr <- udf(df1=3,df2=6)
## Generate generator object; use method PINV (inversion)
gen <- pinvd.new(distr)
## Draw a sample of size 100
x <- ur(gen,100)