udchisq {Runuran} | R Documentation |
UNU.RAN object for Chi-Squared distribution
Description
Create UNU.RAN object for a Chi-squared (\chi^2
)
distribution with df
degrees of freedom.
[Distribution] – Chi-squared.
Usage
udchisq(df, lb=0, ub=Inf)
Arguments
df |
degrees of freedom (strictly positive). Non-integer values allowed. |
lb |
lower bound of (truncated) distribution. |
ub |
upper bound of (truncated) distribution. |
Details
The Chi-squared distribution with df
= n > 0
degrees of
freedom has density
f_n(x) = \frac{1}{{2}^{n/2} \Gamma (n/2)} {x}^{n/2-1} {e}^{-x/2}
for x > 0
.
The domain of the distribution can be truncated to the
interval (lb
,ub
).
Value
An object of class "unuran.cont"
.
Author(s)
Josef Leydold and Wolfgang H\"ormann unuran@statmath.wu.ac.at.
References
N.L. Johnson, S. Kotz, and N. Balakrishnan (1994): Continuous Univariate Distributions, Volume 1. 2nd edition, John Wiley & Sons, Inc., New York. Chap. 18, p. 416
See Also
Examples
## Create distribution object for chi-squared distribution
distr <- udchisq(df=5)
## Generate generator object; use method PINV (inversion)
gen <- pinvd.new(distr)
## Draw a sample of size 100
x <- ur(gen,100)