udcauchy {Runuran}R Documentation

UNU.RAN object for Cauchy distribution

Description

Create UNU.RAN object for a Cauchy distribution with location parameter location and scale parameter scale.

[Distribution] – Cauchy.

Usage

udcauchy(location=0, scale=1, lb=-Inf, ub=Inf)

Arguments

location

location parameter.

scale

(strictly positive) scale parameter.

lb

lower bound of (truncated) distribution.

ub

upper bound of (truncated) distribution.

Details

The Cauchy distribution with location ll and scale ss has density

f(x)=1πs(1+(xls)2)1f(x) = \frac{1}{\pi s} \left( 1 + \left(\frac{x - l}{s}\right)^2 \right)^{-1}

for all xx.

The domain of the distribution can be truncated to the interval (lb,ub).

Value

An object of class "unuran.cont".

Author(s)

Josef Leydold and Wolfgang H\"ormann unuran@statmath.wu.ac.at.

References

N.L. Johnson, S. Kotz, and N. Balakrishnan (1994): Continuous Univariate Distributions, Volume 1. 2nd edition, John Wiley & Sons, Inc., New York. Chap. 16, p. 299.

See Also

unuran.cont.

Examples

## Create distribution object for Cauchy distribution
distr <- udcauchy()
## Generate generator object; use method PINV (inversion)
gen <- pinvd.new(distr)
## Draw a sample of size 100
x <- ur(gen,100)


[Package Runuran version 0.38 Index]