dari.new {Runuran} | R Documentation |
UNU.RAN generator based on Discrete Automatic Rejection Inversion (DARI)
Description
UNU.RAN random variate generator for discrete distributions with given probability mass function (PMF). It is based on Discrete Automatic Rejection Inversion (‘DARI’).
[Universal] – Rejection Method.
Usage
dari.new(pmf, lb, ub, mode=NA, sum=1, ...)
darid.new(distr)
Arguments
pmf |
probability mass function. (R function) |
lb |
lower bound of domain;
use |
ub |
upper bound of domain;
use |
mode |
mode of distribution. (integer) |
sum |
sum over all “probabilities”. (numeric) |
... |
(optional) arguments for |
distr |
distribution object. (S4 object of class |
Details
This function creates an unuran
object based on ‘DARI’
(Discrete Automatic Rejection Inversion). It can be used to draw
samples of a discrete random variate with given probability mass function
using ur
.
Function pmf
must be postive but need not be normalized
(i.e., it can be any multiple of a probability mass function).
The given function must be T_{-0.5}
-concave;
this includes all log-concave distributions.
In addition the algorithm requires the location of the mode
.
If omitted then it is computed by a slow numerical search.
If the sum over all probabilities is different from 1 then a rough estimate of this sum is required.
Alternatively, one can use function darid.new
where the object
distr
of class "unuran.discr"
must contain all required
information about the distribution.
Value
An object of class "unuran"
.
Author(s)
Josef Leydold and Wolfgang H\"ormann unuran@statmath.wu.ac.at.
References
W. H\"ormann, J. Leydold, and G. Derflinger (2004): Automatic Nonuniform Random Variate Generation. Springer-Verlag, Berlin Heidelberg. See Section 10.2 (Tranformed Probability Rejection).
See Also
ur
,
unuran.discr
,
unuran.new
,
unuran
.
Examples
## Create a sample of size 100 for a Binomial distribution
## with 1000 number if observations and probability 0.2
gen <- dari.new(pmf=dbinom, lb=0, ub=1000, size=1000, prob=0.2)
x <- ur(gen,100)
## Create a sample from a distribution with PMF
## p(x) = 1/x^3, x >= 1 (Zipf distribution)
zipf <- function (x) { 1/x^3 }
gen <- dari.new(pmf=zipf, lb=1, ub=Inf)
x <- ur(gen,100)
## Alternative approach
distr <- udbinom(size=100,prob=0.3)
gen <- darid.new(distr)
x <- ur(gen,100)