bootmlx {Rsmlx} | R Documentation |
Bootstrapping - case resampling
Description
Generate replicates of the original data using random sampling with replacement. Population parameters are then estimated from each replicate.
Usage
bootmlx(
project,
nboot = 100,
dataFolder = NULL,
parametric = FALSE,
tasks = c(populationParameterEstimation = TRUE),
settings = NULL
)
Arguments
project |
Monolix project |
nboot |
[optional] number of bootstrap replicates (default=100) |
dataFolder |
[optional] folder where already generated datasets are stored, e.g dataFolder="./dummy_project/boot/" (default: data set are generated by bootmlx) |
parametric |
[optional] boolean to define if parametric bootstrap is performed (new data is drawn from the model), (default: false) |
tasks |
[optional] vector of booleans defining the list of tasks to perform (default: estimation of the population parameters) available tasks: populationParameterEstimation, conditionalDistributionSampling, conditionalModeEstimation, standardErrorEstimation, logLikelihoodEstimation, plots |
settings |
[optional] a list of settings for the resampling and the results:
|
Details
Bootstrap functionality is now available directly in the lixoftConnectors package using the function
runBootstrap
. Please migrate, as this function will be deprecated in the future.
Value
a data frame with the bootstrap estimates
See Also
getBootstrapSettings
settings for bootstrap with lixoftConnectors
runBootstrap
run the bootstrap with lixoftConnectors
getBootstrapResults
results for bootstrap with lixoftConnectors
Examples
## Not run:
# RsmlxDemo1.mlxtran is a Monolix project for modelling the PK of warfarin using a PK model
# with parameters ka, V, Cl.
# In this example, bootmlx will generate 100 random replicates of the original data and will
# use Monolix to estimate the population parameters from each of these 100 replicates:
r1 <- bootmlx(project="RsmlxDemo1.mlxtran")
# 5 replicates will now be generated, with 50 individuals in each replicate:
r2 <- bootmlx(project="RsmlxDemo1.mlxtran", nboot = 5, settings = list(N = 50))
# Proportions of males and females in the original dataset will be preserved
# in each replicate:
r3 <- bootmlx(project="RsmlxDemo1.mlxtran", settings = list(covStrat = "sex"))
## End(Not run)
# See http://monolix.lixoft.com/rsmlx/bootmlx/ for detailed examples of use of bootmlx
# Download the demo examples here: http://monolix.lixoft.com/rsmlx/installation