predict {Rquefts} | R Documentation |
Spatial QUEFTS model predictions
Description
Make spatial predictions with a QUEFTS model. First create a model, then use the model with a SpatRaster of soil properties to make spatial predictions.
Usage
## S4 method for signature 'Rcpp_QueftsModel'
predict(object, supply, yatt, leaf_ratio, stem_ratio,
var="yield", filename="", overwrite=FALSE, ...)
Arguments
object |
QUEFTSModel |
supply |
SpatRaster with nutrient supply data (Ns, Ps, Ks) |
yatt |
SpatRaster with attainable yield |
leaf_ratio |
positive numeric (typically between 0 and 1) indicating the leaf weight relative to the storage organ weight. For example: 0.46 for maize, 0.17 for potato, and 0.18 for rice |
stem_ratio |
positive numeric (typically between 0 and 1) indicating the stem weight relative to the storage organ weight, For example: 0.56 for maize, 0.14 for potato, and 0.67 for rice |
var |
character. Output variable name. Either "yield" or "gap" |
filename |
character. Output filename. Optional |
overwrite |
logical. If |
... |
list. Options for writing files as in |
Value
SpatRaster
Examples
library(terra)
ff <- list.files(system.file("sp", package="Rquefts"), full.names=TRUE)
r <- rast(ff)
soil <- r[[c("Tavg", "pH", "SOC", "Kex", "Pex", "Ptot")]]
supply <- lapp(soil, nutSupply2)
plot(supply)
yatt <- rast(system.file("sp/Ya.tif", package="Rquefts"))
maize <- quefts_crop("Maize")
fertilizer <- list(N=0, P=0, K=0)
q <- quefts(crop=maize, fert=fertilizer)
p <- predict(q, supply, yatt, 0.46, 0.56)
plot(p)
g <- predict(q, supply, yatt, 0.46, 0.56, "gap")
plot(g)