WOEclust_hclust {Rprofet} | R Documentation |
Hierarchical Variable Clustering
Description
Function that implements hierarchical clustering on the variables to be used as a form of variable selection.
Usage
WOEclust_hclust(object, id, target, num_clusts, method = "ward.D")
Arguments
object |
A WOEProfet object containing dataframes with binned and WOE values. |
id |
ID variable. |
target |
A binary target variable. |
num_clusts |
Number of desired clusters. |
method |
Clustering method to be used. This should be one of "ward.D", "ward.D2", "single", "average", "mcquitty", "median",or "centroid". |
Value
A dataframe indicating the assigned clusters for the predictor variables.
Examples
mydata <- ISLR::Default
mydata$ID = seq(1:nrow(mydata)) ## make the ID variable
mydata$default<-ifelse(mydata$default=="Yes",1,0) ## Creating numeric binary target variable
## create two new variables from bivariate normal
sigma <- matrix(c(45000,-3000,-3000, 55000), nrow = 2)
set.seed(10)
newvars <- MASS::mvrnorm(nrow(mydata),
mu=c(1000,200), Sigma=sigma)
mydata$newvar1 <- newvars[,1]
mydata$newvar2 <- newvars[,2]
binned <- BinProfet(mydata, id= "ID", target= "default", num.bins = 5) ## Binning variables
WOE_dat <- WOEProfet(binned, "ID","default")
## Cluster variables by WOEClust_hclust
clusters <- WOEclust_hclust(WOE_dat, id="ID", target="default", num_clusts=3)
clusters
[Package Rprofet version 3.1.1 Index]