outliers_mahalanobis {Routliers} | R Documentation |
mahalanobis function to detect outliers
Description
Detecting multivariate outliers using the Mahalanobis distance
Usage
outliers_mahalanobis(x, alpha, na.rm)
Arguments
x |
matrix of bivariate values from which we want to compute outliers |
alpha |
nominal type I error probability (by default .01) |
na.rm |
set whether Missing Values should be excluded (na.rm = TRUE) or not (na.rm = FALSE) - defaults to TRUE |
Value
Returns Call, Max distance, number of outliers
Examples
#### Run outliers_mahalanobis
data(Attacks)
SOC <- rowMeans(Attacks[,c("soc1r","soc2r","soc3r","soc4","soc5","soc6","soc7r",
"soc8","soc9","soc10r","soc11","soc12","soc13")])
HSC <- rowMeans(Attacks[,22:46])
res <- outliers_mahalanobis(x = cbind(SOC,HSC), na.rm = TRUE)
# A list of elements can be extracted from the function,
# such as the position of outliers in the dataset
# and the coordinates of outliers
res$outliers_pos
res$outliers_val
[Package Routliers version 0.0.0.3 Index]