predict.RuleSetFRST {RoughSets} | R Documentation |
The predicting function for rule induction methods based on FRST
Description
It is a function used to obtain predicted values after obtaining rules by using rule induction methods.
We have provided the functions RI.GFRS.FRST
and RI.hybridFS.FRST
to generate rules based on FRST.
Usage
## S3 method for class 'RuleSetFRST'
predict(object, newdata, ...)
Arguments
object |
a |
newdata |
a |
... |
the other parameters. |
Value
The predicted values.
Author(s)
Lala Septem Riza
See Also
RI.indiscernibilityBasedRules.RST
, RI.GFRS.FRST
and RI.hybridFS.FRST
Examples
##############################################
## Example: Classification Task
##############################################
data(RoughSetData)
decision.table <- RoughSetData$pima7.dt
## using RI.hybrid.FRST for generating rules
control <- list(type.aggregation = c("t.tnorm", "lukasiewicz"),
type.relation = c("tolerance", "eq.1"), t.implicator = "lukasiewicz")
rules.hybrid <- RI.hybridFS.FRST(decision.table, control)
## in this case, we are using the same data set as the training data
res.1 <- predict(rules.hybrid, decision.table[, -ncol(decision.table)])
## using RI.GFRS.FRST for generating rules
control <- list(alpha.precision = 0.01, type.aggregation = c("t.tnorm", "lukasiewicz"),
type.relation = c("tolerance", "eq.3"), t.implicator = "lukasiewicz")
rules.gfrs <- RI.GFRS.FRST(decision.table, control)
## in this case, we are using the same data set as the training data
res.2 <- predict(rules.gfrs, decision.table[, -ncol(decision.table)])
##############################################
## Example: Regression Task
##############################################
data(RoughSetData)
decision.table <- RoughSetData$housing7.dt
## using RI.hybrid.FRST for generating rules
control <- list(type.aggregation = c("t.tnorm", "lukasiewicz"),
type.relation = c("tolerance", "eq.1"), t.implicator = "lukasiewicz")
rules <- RI.hybridFS.FRST(decision.table, control)
## in this case, we are using the same data set as the training data
res.1 <- predict(rules, decision.table[, -ncol(decision.table)])
[Package RoughSets version 1.3-8 Index]