RI.AQRules.RST {RoughSets} | R Documentation |
Rule induction using the AQ algorithm
Description
A version of the AQ algorithm which was originally proposed by R.S. Michalski. This implamentation is based on a concept of a local (object-relative) decision reduct from RST.
Usage
RI.AQRules.RST(decision.table, confidence = 1, timesCovered = 1)
Arguments
decision.table |
an object inheriting from the |
confidence |
a numeric value giving the minimal confidence of computed rules. |
timesCovered |
a positive integer. The algorithm will try to find a coverage of training examples with rules,
such that each example is covered by at least |
Value
An object of a class "RuleSetRST"
. For details see RI.indiscernibilityBasedRules.RST
.
Author(s)
Andrzej Janusz
References
R.S. Michalski, K. Kaufman, J. Wnek: "The AQ Family of Learning Programs: A Review of Recent Developments and an Exemplary Application", Reports of Machine Learning and Inference Laboratory, George Mason University (1991)
See Also
predict.RuleSetFRST
, RI.indiscernibilityBasedRules.RST
, RI.CN2Rules.RST
,
RI.LEM2Rules.RST
.
Examples
###########################################################
## Example
##############################################################
data(RoughSetData)
wine.data <- RoughSetData$wine.dt
set.seed(13)
wine.data <- wine.data[sample(nrow(wine.data)),]
## Split the data into a training set and a test set,
## 60% for training and 40% for testing:
idx <- round(0.6 * nrow(wine.data))
wine.tra <-SF.asDecisionTable(wine.data[1:idx,],
decision.attr = 14,
indx.nominal = 14)
wine.tst <- SF.asDecisionTable(wine.data[(idx+1):nrow(wine.data), -ncol(wine.data)])
true.classes <- wine.data[(idx+1):nrow(wine.data), ncol(wine.data)]
## discretization:
cut.values <- D.discretization.RST(wine.tra,
type.method = "unsupervised.quantiles",
nOfIntervals = 3)
data.tra <- SF.applyDecTable(wine.tra, cut.values)
data.tst <- SF.applyDecTable(wine.tst, cut.values)
## rule induction from the training set:
rules <- RI.AQRules.RST(data.tra, confidence = 0.9, timesCovered = 3)
rules
## predicitons for the test set:
pred.vals <- predict(rules, data.tst)
## checking the accuracy of predictions:
mean(pred.vals == true.classes)