MV.mostCommonVal {RoughSets} | R Documentation |
Replacing missing attribute values by the attribute mean or common values
Description
It is used for handling missing values by replacing the attribute mean or common values. If an attributes containing missing values is continuous/real, the method uses mean of the attribute instead of the most common value.
In order to generate a new decision table, we need to execute SF.applyDecTable
.
Usage
MV.mostCommonVal(decision.table)
Arguments
decision.table |
a |
Value
A class "MissingValue"
. See MV.missingValueCompletion
.
Author(s)
Lala Septem Riza
References
J. Grzymala-Busse and W. Grzymala-Busse, "Handling Missing Attribute Values," in Data Mining and Knowledge Discovery Handbook, O. Maimon and L. Rokach, Eds. New York : Springer, 2010, pp. 33-51
See Also
Examples
#############################################
## Example: Replacing missing attribute values
## by the attribute mean/common values
#############################################
dt.ex1 <- data.frame(
c(100.2, 102.6, NA, 99.6, 99.8, 96.4, 96.6, NA),
c(NA, "yes", "no", "yes", NA, "yes", "no", "yes"),
c("no", "yes", "no", "yes", "yes", "no", "yes", NA),
c("yes", "yes", "no", "yes", "no", "no", "no", "yes"))
colnames(dt.ex1) <- c("Temp", "Headache", "Nausea", "Flu")
decision.table <- SF.asDecisionTable(dataset = dt.ex1, decision.attr = 4,
indx.nominal = c(2:4))
indx = MV.mostCommonVal(decision.table)
[Package RoughSets version 1.3-8 Index]