D.discretize.quantiles.RST {RoughSets} | R Documentation |
The quantile-based discretization
Description
This function implements unsupervised discretization into intervals containing similar number of instances ("quantile-based").
Usage
D.discretize.quantiles.RST(decision.table, nOfIntervals = 4)
Arguments
decision.table |
an object inheriting from the |
nOfIntervals |
a positive integer giving the number of intervals. |
Details
This approach belongs to a class of unsupervised discretization methods
since it does not consider the class labels. Each numeric attribute is divided in k
intervals which contain approximately
the same number of data instances (objects).
Detailed information regarding this method can be found in (Dougherty et al, 1995).
It should be noted that the output of this function is an object of a class "Discretization"
which contains the cut values.
The function SF.applyDecTable
has to be used in order to generate the new (discretized) decision table.
Value
An object of a class "Discretization"
which stores cuts for each conditional attribute.
See D.discretization.RST
.
Author(s)
Andrzej Janusz
References
J. Dougherty, R. Kohavi, and M. Sahami, "Supervised and Unsupervised Discretization of Continuous Features", In A. Prieditis & S. J. Russell, eds. Work. Morgan Kaufmann, p. 194-202 (1995).
See Also
D.discretize.equal.intervals.RST
, D.global.discernibility.heuristic.RST
,
D.local.discernibility.heuristic.RST
, SF.applyDecTable
.
A wrapper function for all available discretization methods: D.discretization.RST
Examples
#################################################################
## Example: Determine cut values and generate new decision table
#################################################################
data(RoughSetData)
wine.data <- RoughSetData$wine.dt
cut.values <- D.discretize.quantiles.RST(wine.data, nOfIntervals = 5)
## generate a new decision table
wine.discretized <- SF.applyDecTable(wine.data, cut.values)
dim(wine.discretized)
lapply(wine.discretized, unique)